345 research outputs found
Wilson Expansion of QCD Propagators at Three Loops: Operators of Dimension Two and Three
In this paper we construct the Wilson short distance operator product
expansion for the gluon, quark and ghost propagators in QCD, including
operators of dimension two and three, namely, A^2, m^2, m A^2, \ovl{\psi} \psi
and m^3. We compute analytically the coefficient functions of these operators
at three loops for all three propagators in the general covariant gauge. Our
results, taken in the Landau gauge, should help to improve the accuracy of
extracting the vacuum expectation values of these operators from lattice
simulation of the QCD propagators.Comment: 20 pages, no figure
Optimal renormalization and the extraction of strange quark mass from semi-leptonic -decay
We employ optimal renormalization group analysis to semi-leptonic
-decay polarization functions and extract the strange quark mass from
their moments measured by the ALEPH and OPAL collaborations. The optimal
renormalization group makes use of the renormalization group equation of a
given perturbation series which then leads to closed form sum of all the
renormalization group-accessible logarithms which have reduced scale
dependence. Using the latest theoretical inputs we find and for
ALEPH and OPAL data respectively.Comment: 3 pages, Contribution to the proceedings of the XXII DAE-BRNS High
Energy Physics Symposium, University of Delhi, Dec. 12-16, 201
The NNLO gluon fusion Higgs production cross-section with many heavy quarks
We consider extensions of the Standard Model with a number of additional
heavy quarks which couple to the Higgs boson via top-like Yukawa interactions.
We construct an effective theory valid for a Higgs boson mass which is lighter
than twice the lightest heavy quark mass and compute the corresponding Wilson
coefficient through NNLO. We present numerical results for the gluon fusion
cross-section at the Tevatron for an extension of the Standard Model with a
fourth generation of heavy quarks. The gluon fusion cross-section is enhanced
by a factor of roughly 9 with respect to the Standard Model value. Tevatron
experimental data can place stringent exclusion limits for the Higgs mass in
this model.Comment: 14 pages, 1 tabl
Application of the DRA method to the calculation of the four-loop QED-type tadpoles
We apply the DRA method to the calculation of the four-loop `QED-type'
tadpoles. For arbitrary space-time dimensionality D the results have the form
of multiple convergent sums. We use these results to obtain the
epsilon-expansion of the integrals around D=3 and D=4.Comment: References added, some typos corrected. Results unchange
Chiral corrections to the Gell-Mann-Oakes-Renner relation
The next to leading order chiral corrections to the
Gell-Mann-Oakes-Renner (GMOR) relation are obtained using the pseudoscalar
correlator to five-loop order in perturbative QCD, together with new finite
energy sum rules (FESR) incorporating polynomial, Legendre type, integration
kernels. The purpose of these kernels is to suppress hadronic contributions in
the region where they are least known. This reduces considerably the systematic
uncertainties arising from the lack of direct experimental information on the
hadronic resonance spectral function. Three different methods are used to
compute the FESR contour integral in the complex energy (squared) s-plane, i.e.
Fixed Order Perturbation Theory, Contour Improved Perturbation Theory, and a
fixed renormalization scale scheme. We obtain for the corrections to the GMOR
relation, , the value . This result
is substantially more accurate than previous determinations based on QCD sum
rules; it is also more reliable as it is basically free of systematic
uncertainties. It implies a light quark condensate . As a byproduct, the chiral perturbation theory (unphysical) low energy
constant is predicted to be , or .Comment: A comment about the value of the strong coupling has been added at
the end of Section 4. No change in results or conslusion
ABJ(M) Chiral Primary Three-Point Function at Two-loops
This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%archiveprefix: arXiv primaryclass: hep-th reportnumber: QMUL-PH-14-10 slaccitation: %%CITATION = ARXIV:1404.1117;%%Article funded by SCOAP
Limit Cycles and Conformal Invariance
There is a widely held belief that conformal field theories (CFTs) require
zero beta functions. Nevertheless, the work of Jack and Osborn implies that the
beta functions are not actually the quantites that decide conformality, but
until recently no such behavior had been exhibited. Our recent work has led to
the discovery of CFTs with nonzero beta functions, more precisely CFTs that
live on recurrent trajectories, e.g., limit cycles, of the beta-function vector
field. To demonstrate this we study the S function of Jack and Osborn. We use
Weyl consistency conditions to show that it vanishes at fixed points and agrees
with the generator Q of limit cycles on them. Moreover, we compute S to third
order in perturbation theory, and explicitly verify that it agrees with our
previous determinations of Q. A byproduct of our analysis is that, in
perturbation theory, unitarity and scale invariance imply conformal invariance
in four-dimensional quantum field theories. Finally, we study some properties
of these new, "cyclic" CFTs, and point out that the a-theorem still governs the
asymptotic behavior of renormalization-group flows.Comment: 31 pages, 4 figures. Expanded introduction to make clear that cycles
discussed in this work are not associated with unitary theories that are
scale but not conformally invarian
The QCD Coupling Constant
This paper presents a summary of the current status of determinations of the
strong coupling constant alpha_s. A detailed description of the definition,
scale dependence and inherent theoretical ambiguities is given. The various
physical processes that can be used to determine alpha_s are reviewed and
attention is given to the uncertainties, both theoretical and experimental.Comment: 56 page
Supersymmetric Higgs Yukawa Couplings to Bottom Quarks at next-to-next-to-leading Order
The effective bottom Yukawa couplings are analyzed for the minimal
supersymmetric extension of the Standard Model at two-loop accuracy within
SUSY-QCD. They include the resummation of the dominant corrections for large
values of tg(beta). In particular the two-loop SUSY-QCD corrections to the
leading SUSY-QCD and top-induced SUSY-electroweak contributions are addressed.
The residual theoretical uncertainties range at the per-cent level.Comment: 25 pages, 9 figures, added comments and references, typos corrected,
results unchanged, published versio
- …
