28 research outputs found

    A global review of green turtle diet: sea surface temperature as a potential driver of omnivory levels

    Get PDF
    To better understand dietary requirements, trophic shifts, and trophic interactions of the threatened green turtle (Chelonia mydas), we conducted a comprehensive global review and literature tabulation (177 studies) reporting diets of individuals & 25 cm carapace length. We analysed those studies involving natural sites and healthy animals that reported relative proportions of all diet components (67 studies, 89 datasets at 75 sites, 13 geographic sub-regions, 3 oceans). We compared diets by sub-region and foraging site relative to four diet components, i.e., seagrass, macroalgae, terrestrial plants (including mangroves) and animal matter. To assess sea surface temperature (SST) as an environmental driver, values were extracted from satellite data (single year) and site-specific observations (study durations) and examined relative to diet composition. Satellite data indicated that at warmer sites with temperatures & 25 °C (≥ 6 months annually), diet was predominantly herbivorous (mean = 92.97%; SE = 9.85; n = 69 datasets). At higher latitude sites and in cold-water currents with SST & 20 °C (≥ 6 months annually), dietary animal matter featured prominently (mean = 51.47%; SE = 4.84; n = 20 datasets). Site-specific observations indicated that SST had a small but significant effect on contributions of animal matter (r2 = 0.17, P =  & 0.001) and seagrass (r2 = 0.24, P =  & 0.001) but not macroalgae and terrestrial plants. Our study presents the first quantitative evidence at a global scale that temperature may be an important driver of omnivory, providing a new perspective on variations in green turtle diet, especially in light of global warming and climate change

    Evolution of High Trophic Diversity Based on Limited Functional Disparity in the Feeding Apparatus of Marine Angelfishes (f. Pomacanthidae)

    Get PDF
    The use of biting to obtain food items attached to the substratum is an ecologically widespread and important mode of feeding among aquatic vertebrates, which rarely has been studied. We did the first evolutionary analyses of morphology and motion kinematics of the feeding apparatus in Indo-Pacific members of an iconic family of biters, the marine angelfishes (f. Pomacanthidae). We found clear interspecific differences in gut morphology that clearly reflected a wide range of trophic niches. In contrast, feeding apparatus morphology appeared to be conserved. A few unusual structural innovations enabled angelfishes to protrude their jaws, close them in the protruded state, and tear food items from the substratum at a high velocity. Only one clade, the speciose pygmy angelfishes, showed functional departure from the generalized and clade-defining grab-and-tearing feeding pattern. By comparing the feeding kinematics of angelfishes with wrasses and parrotfishes (f. Labridae) we showed that grab-and-tearing is based on low kinematics disparity. Regardless of its restricted disparity, the grab-and-tearing feeding apparatus has enabled angelfishes to negotiate ecological thresholds: Given their widely different body sizes, angelfishes can access many structurally complex benthic surfaces that other biters likely are unable to exploit. From these surfaces, angelfishes can dislodge sturdy food items from their tough attachments. Angelfishes thus provide an intriguing example of a successful group that appears to have evolved considerable trophic diversity based on an unusual yet conserved feeding apparatus configuration that is characterized by limited functional disparity

    Habitat Associations of Juvenile Fish at Ningaloo Reef, Western Australia: The Importance of Coral and Algae

    Get PDF
    Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs resilient to this should be a conservation priority

    Structures of the Signal Recognition Particle Receptor from the Archaeon Pyrococcus furiosus: Implications for the Targeting Step at the Membrane

    Get PDF
    In all organisms, a ribonucleoprotein called the signal recognition particle (SRP) and its receptor (SR) target nascent proteins from the ribosome to the translocon for secretion or membrane insertion. We present the first X-ray structures of an archeal FtsY, the receptor from the hyper-thermophile Pyrococcus furiosus (Pfu), in its free and GDP•magnesium-bound forms. The highly charged N-terminal domain of Pfu-FtsY is distinguished by a long N-terminal helix. The basic charges on the surface of this helix are likely to regulate interactions at the membrane. A peripheral GDP bound near a regulatory motif could indicate a site of interaction between the receptor and ribosomal or SRP RNAs. Small angle X-ray scattering and analytical ultracentrifugation indicate that the crystal structure of Pfu-FtsY correlates well with the average conformation in solution. Based on previous structures of two sub-complexes, we propose a model of the core of archeal and eukaryotic SRP•SR targeting complexes

    Movements of Diadromous Fish in Large Unregulated Tropical Rivers Inferred from Geochemical Tracers

    Get PDF
    Patterns of migration and habitat use in diadromous fishes can be highly variable among individuals. Most investigations into diadromous movement patterns have been restricted to populations in regulated rivers, and little information exists for those in unregulated catchments. We quantified movements of migratory barramundi Lates calcarifer (Bloch) in two large unregulated rivers in northern Australia using both elemental (Sr/Ba) and isotope (87Sr/86Sr) ratios in aragonitic ear stones, or otoliths. Chemical life history profiles indicated significant individual variation in habitat use, particularly among chemically distinct freshwater habitats within a catchment. A global zoning algorithm was used to quantify distinct changes in chemical signatures across profiles. This algorithm identified between 2 and 6 distinct chemical habitats in individual profiles, indicating variable movement among habitats. Profiles of 87Sr/86Sr ratios were notably distinct among individuals, with highly radiogenic values recorded in some otoliths. This variation suggested that fish made full use of habitats across the entire catchment basin. Our results show that unrestricted movement among freshwater habitats is an important component of diadromous life histories for populations in unregulated systems

    Low-intensity continuous ultrasound triggers effective bisphosphonate anticancer activity in breast cancer

    Get PDF
    Ultrasound (US) is a non-ionizing pressure wave that can produce mechanical and thermal effects. Bisphosphonates have demonstrated clinical utility in bone metastases treatment. Preclinical studies suggest that bisphosphonates have anticancer activity. However, bisphosphonates exhibit a high affinity for bone mineral, which reduces their bioavailability for tumor cells. Ultrasound has been shown to be effective for drug delivery but in interaction with gas bubbles or encapsulated drugs. We examined the effects of a clinically relevant dose of bisphosphonate zoledronate (ZOL) in combination with US. In a bone metastasis model, mice treated with ZOL+US had osteolytic lesions that were 58% smaller than those of ZOL-treated animals as well as a reduced skeletal tumor burden. In a model of primary tumors, ZOL+US treatment reduced by 42% the tumor volume, compared with ZOL-treated animals. Using a fluorescent bisphosphonate, we demonstrated that US forced the release of bisphosphonate from the bone surface, enabling a continuous impregnation of the bone marrow. Additionally, US forced the penetration of ZOL within tumors, as demonstrated by the intratumoral accumulation of unprenylated Rap1A, a surrogate marker of ZOL antitumor activity. Our findings made US a promising modality to trigger bisphosphonate anticancer activity in bone metastases and in primary tumors

    Citizen science driven big data collection requires improved and inclusive societal engagement

    Get PDF
    Marine ecosystems are in a state of crisis worldwide due to anthropogenic stressors, exacerbated by generally diminished ocean literacy. In other sectors, big data and technological advances are opening our horizons towards improved knowledge and understanding. In the marine environment the opportunities afforded by big data and new technologies are limited by a lack of available empirical data on habitats, species, and their ecology. This limits our ability to manage these systems due to poor understanding of the processes driving loss and recovery. For improved chances of achieving sustainable marine systems, detailed local data is required that can be connected regionally and globally. Citizen Science (CS) is a potential tool for monitoring and conserving marine ecosystems, particularly in the case of shallow nearshore habitats, however, limited understanding exists as to the effectiveness of CS programmes in engaging the general public or their capacity to collect marine big data. This study aims to understand and identify pathways for improved engagement of citizen scientists. We investigated the motivations and barriers to engagement of participants in CS using two major global seagrass CS programmes. Programme participants were primarily researchers in seagrass science or similar fields which speak to a more general problem of exclusivity across CS. Altruistic motivations were demonstrated, whilst deterrence was associated with poor project organisation and a lack of awareness of specified systems and associated CS projects. Knowledge of seagrass ecosystems from existing participants was high and gains because of participation consequently minimal. For marine CS projects to support big data, we need to expand and diversify their current user base. We suggest enhanced outreach to stakeholders using cooperatively identified ecological questions, for example situated within the context of maintaining local ecosystem services. Dissemination of information should be completed with a variety of media types and should stress the potential for knowledge transfer, novel social interactions, and stewardship of local environments. Although our research confirms the potential for CS to foster enhanced collection of big data for improved marine conservation and management, we illustrate the need to improve and expand approaches to user engagement to reach required data targets
    corecore