7 research outputs found

    Detailed dimethylacetal and fatty acid composition of rumen content from lambs fed lucerne or concentrate supplemented with soybean oil

    Get PDF
    Articles in International JournalsLipid metabolism in the rumen is responsible for the complex fatty acid profile of rumen outflow compared with the dietary fatty acid composition, contributing to the lipid profile of ruminant products. A method for the detailed dimethylacetal and fatty acid analysis of rumen contents was developed and applied to rumen content collected from lambs fed lucerne or concentrate based diets supplemented with soybean oil. The methodological approach developed consisted on a basic/ acid direct transesterification followed by thin-layer chromatography to isolate fatty acid methyl esters from dimethylacetal, oxo- fatty acid and fatty acid dimethylesters. The dimethylacetal composition was quite similar to the fatty acid composition, presenting even-, odd- and branched-chain structures. Total and individual odd- and branched-chain dimethylacetals were mostly affected by basal diet. The presence of 18:1 dimethylacetals indicates that biohydrogenation intermediates might be incorporated in structural microbial lipids. Moreover, medium-chain fatty acid dimethylesters were identified for the first time in the rumen content despite their concentration being relatively low. The fatty acids containing 18 carbon-chain lengths comprise the majority of the fatty acids present in the rumen content, most of them being biohydrogenation intermediates of 18:2n26 and 18:3n23. Additionally, three oxo- fatty acids were identified in rumen samples, and 16-O-18:0 might be produced during biohydrogenation of the 18:3n23

    Starter cultures and cattle feed manipulation enhance conjugated linoleic acid concentrations in Cheddar cheese

    No full text
    Conjugated linoleic acid (CLA) is a fatty acid (FA) that provides several health benefits to humans. The feeding of fish oil-supplemented diets to dairy cows has been extensively studied as a means to improve the CLA content in milk. Several studies have also been conducted on the ability of many microorganisms to produce CLA by utilizing substrates containing linoleic acid. In the present study, the dietary manipulated milk was used in combination with the CLA-producing culture to manufacture Cheddar cheese. The two diets fed to cattle were control and treatment diets to obtain control and treatment milk, respectively. The treatment diet containing fish oil (0.75% of dry matter) was fed to 32 dairy cows grouped in a pen for 18 d to increase the total CLA content in milk. Treatment milk had a CLA content of 1.60 g/100 g of FA compared with 0.58 g/100 g of FA in control milk. obtained by feeding the control diet. A 2 × 2 factorial design with 3 replicates was used to test the combined effect of the CLA-producing starter culture of Lactococcus lactis (CI4b) versus a commercial CLA nonproducing cheese starter as the control culture, and type of milk (control vs. treatment milk) on CLA content in Cheddar cheese. Chemical composition (moisture, salt, fat, and protein) was not affected by the type of culture used. However, the age of the cheese affected the sensory properties and microbiological counts in the different treatments. Ripening with the CI4b culture was found to be effective in further enhancing the CLA content. The CI4b cheeses made from control milk and treatment milk contained 1.09 and 2.41 (±0.18) g of total CLA/100 g of FA after 1 mo of ripening, which increased to 1.44 and 2.61 (±0.18) g of total CLA/100 g of FA after 6 mo of ripening, respectively. The use of treatment milk resulted in an increase in the CLA isomers (trans-7, cis-9 +. cis-9, trans-11, trans-9, cis-11 + cis-10, trans-12, trans-10, cis-12, cis-9, cis-11, trans-11, cis-13, cis-11, cis-13, trans-11, trans-13, and trans-9, trans-11). The CI4b culture specifically increased cis-11, cis-13 and trans-10, cis-12 isomers in cheese. The total CLA content in cheese was significantly higher when the CI4b culture was used compared with CLA nonproducing culture cheeses made from control milk and treatment milk after 1 mo [1.09 and 2.14 (±0.18) g of total CLA/100 g of FA] and 6 mo [0.99 and 2.05 (±0.18) g of total CLA/100 g of FA] of ripening, respectively. The results indicated that the combination of a CLA-producing starter culture and milk from cattle fed fish oil-supplemented diets (0.99 g of CLA/100. g of FA) could enhance levels of total CLA in Cheddar cheese by up to 2.6 times compared with cheese made from control milk with CLA nonproducing starter culture (2.61 g of CLA/100 g of FA) after 6 mo

    Isomerization of Vaccenic Acid to cis and trans C18:1 Isomers During Biohydrogenation by Rumen Microbes

    No full text
    International audienceIn ruminants, cis and trans C18:1 isomers are intermediates of fatty acid transformations in the rumen and their relative amounts shape the nutritional quality of ruminant products. However, their exact synthetic pathways are unclear and their proportions change with the forage:concentrate ratio in ruminant diets. This study traced the metabolism of vaccenic acid, the main trans C18:1 isomer found in the rumen, through the incubation of labeled vaccenic acid with mixed ruminal microbes adapted to different diets. [1-13C]trans-11 C18:1 was added to in vitro cultures with ruminal fluids of sheep fed either a forage or a concentrate diet. 13C enrichment in fatty acids was analyzed by gas-chromatography-mass spectrometry after 0, 5 and 24 h of incubation. 13C enrichment was found in stearic acid and in all cis and trans C18:1 isomers. Amounts of 13C found in fatty acids showed that 95% of vaccenic acid was saturated to stearic acid after 5 h of incubation with the concentrate diet, against 78% with the forage diet. We conclude that most vaccenic acid is saturated to stearic acid, but some is isomerized to all cis and trans C18:1 isomers, with probably more isomerization in sheep fed a forage diet
    corecore