21,177 research outputs found
From the area under the Bessel excursion to anomalous diffusion of cold atoms
Levy flights are random walks in which the probability distribution of the
step sizes is fat-tailed. Levy spatial diffusion has been observed for a
collection of ultra-cold Rb atoms and single Mg+ ions in an optical lattice.
Using the semiclassical theory of Sisyphus cooling, we treat the problem as a
coupled Levy walk, with correlations between the length and duration of the
excursions. The problem is related to the area under Bessel excursions,
overdamped Langevin motions that start and end at the origin, constrained to
remain positive, in the presence of an external logarithmic potential. In the
limit of a weak potential, the Airy distribution describing the areal
distribution of the Brownian excursion is found. Three distinct phases of the
dynamics are studied: normal diffusion, Levy diffusion and, below a certain
critical depth of the optical potential, x~ t^{3/2} scaling. The focus of the
paper is the analytical calculation of the joint probability density function
from a newly developed theory of the area under the Bessel excursion. The
latter describes the spatiotemporal correlations in the problem and is the
microscopic input needed to characterize the spatial diffusion of the atomic
cloud. A modified Montroll-Weiss (MW) equation for the density is obtained,
which depends on the statistics of velocity excursions and meanders. The
meander, a random walk in velocity space which starts at the origin and does
not cross it, describes the last jump event in the sequence. In the anomalous
phases, the statistics of meanders and excursions are essential for the
calculation of the mean square displacement, showing that our correction to the
MW equation is crucial, and points to the sensitivity of the transport on a
single jump event. Our work provides relations between the statistics of
velocity excursions and meanders and that of the diffusivity.Comment: Supersedes arXiv: 1305.008
Near-Infrared Spectroscopy of the Bright Kuiper Belt Object 2000 EB173
We have obtained a near-infrared spectrum of the bright Kuiper Belt object 2000 EB173; the spectrum appears featureless. The spectrum has a sufficient signal-to-noise ratio to rule out the 1.5 and 2.0 μm absorption from water ice even at the low level seen in the Centaur Chariklo. In addition, we can rule out a 2.3 μm absorption at the level seen in the Centaur Pholus
Scaling Green-Kubo relation and application to three aging systems
The Green-Kubo formula relates the spatial diffusion coefficient to the
stationary velocity autocorrelation function. We derive a generalization of the
Green-Kubo formula valid for systems with long-range or nonstationary
correlations for which the standard approach is no longer valid. For the
systems under consideration, the velocity autocorrelation function asymptotically exhibits a certain scaling behavior and
the diffusion is anomalous . We
show how both the anomalous diffusion coefficient and exponent
can be extracted from this scaling form. Our scaling Green-Kubo relation thus
extends an important relation between transport properties and correlation
functions to generic systems with scale invariant dynamics. This includes
stationary systems with slowly decaying power law correlations as well as aging
systems, whose properties depend on the the age of the system. Even for systems
that are stationary in the long time limit, we find that the long time
diffusive behavior can strongly depend on the initial preparation of the
system. In these cases, the diffusivity is not unique and we
determine its values for a stationary respectively nonstationary initial state.
We discuss three applications of the scaling Green-Kubo relation: Free
diffusion with nonlinear friction corresponding to cold atoms diffusing in
optical lattices, the fractional Langevin equation with external noise recently
suggested to model active transport in cells and the L\'evy walk with numerous
applications, in particular blinking quantum dots. These examples underline the
wide applicability of our approach, which is able to treat very different
mechanisms of anomalous diffusion.Comment: 16 pages, 6 figures, 1 tabl
Nonlinear lattice model of viscoelastic Mode III fracture
We study the effect of general nonlinear force laws in viscoelastic lattice
models of fracture, focusing on the existence and stability of steady-state
Mode III cracks. We show that the hysteretic behavior at small driving is very
sensitive to the smoothness of the force law. At large driving, we find a Hopf
bifurcation to a straight crack whose velocity is periodic in time. The
frequency of the unstable bifurcating mode depends on the smoothness of the
potential, but is very close to an exact period-doubling instability. Slightly
above the onset of the instability, the system settles into a exactly
period-doubled state, presumably connected to the aforementioned bifurcation
structure. We explicitly solve for this new state and map out its
velocity-driving relation
A look at profiler performance
Since about 1974, Doppler radars operating in UHF and VHF ranges have been used increasingly to study atmospheric winds. Historically, large systems capable of obtaining data from high altitudes have focused attention on the mesosphere and stratosphere, rather than on the troposphere wherein abides most of the weather considered by most meteorologists. Research address some questions the meteorologist must logically ask first, viz., what is the actual performance capability of these systems, how accurate is the wind data of interest to meteorologists, and from what altitudes in the troposphere are the data reliably obtained
The Birth-Death-Mutation process: a new paradigm for fat tailed distributions
Fat tailed statistics and power-laws are ubiquitous in many complex systems.
Usually the appearance of of a few anomalously successful individuals
(bio-species, investors, websites) is interpreted as reflecting some inherent
"quality" (fitness, talent, giftedness) as in Darwin's theory of natural
selection. Here we adopt the opposite, "neutral", outlook, suggesting that the
main factor explaining success is merely luck. The statistics emerging from the
neutral birth-death-mutation (BDM) process is shown to fit marvelously many
empirical distributions. While previous neutral theories have focused on the
power-law tail, our theory economically and accurately explains the entire
distribution. We thus suggest the BDM distribution as a standard neutral model:
effects of fitness and selection are to be identified by substantial deviations
from it
Aggregation Patterns in Stressed Bacteria
We study the formation of spot patterns seen in a variety of bacterial
species when the bacteria are subjected to oxidative stress due to hazardous
byproducts of respiration. Our approach consists of coupling the cell density
field to a chemoattractant concentration as well as to nutrient and waste
fields. The latter serves as a triggering field for emission of
chemoattractant. Important elements in the proposed model include the
propagation of a front of motile bacteria radially outward form an initial
site, a Turing instability of the uniformly dense state and a reduction of
motility for cells sufficiently far behind the front. The wide variety of
patterns seen in the experiments is explained as being due the variation of the
details of the initiation of the chemoattractant emission as well as the
transition to a non-motile phase.Comment: 4 pages, REVTeX with 4 postscript figures (uuencoded) Figures 1a and
1b are available from the authors; paper submitted to PRL
Microscopic Selection of Fluid Fingering Pattern
We study the issue of the selection of viscous fingering patterns in the
limit of small surface tension. Through detailed simulations of anisotropic
fingering, we demonstrate conclusively that no selection independent of the
small-scale cutoff (macroscopic selection) occurs in this system. Rather, the
small-scale cutoff completely controls the pattern, even on short time scales,
in accord with the theory of microscopic solvability. We demonstrate that
ordered patterns are dynamically selected only for not too small surface
tensions. For extremely small surface tensions, the system exhibits chaotic
behavior and no regular pattern is realized.Comment: 6 pages, 5 figure
- …
