9 research outputs found

    Prostate cancer cell phenotypes based on AGR2 and CD10 expression

    No full text
    The combination of expression patterns of AGR2 and CD10 by prostate cancer provided four phenotypes that correlated with clinical outcome. Based on immunophenotyping, CD10(low)AGR2(high), CD10(high)AGR2(high), CD10(low)AGR2(low), and CD10(high)AGR2(low) were distinguished. AGR2(+) tumors were associated with longer recurrence-free survival and CD10(+) tumors with shorter recurrence-free survival. In high-stage cases, the CD10(low)AGR2(high) phenotype was associated with a 9-fold higher recurrence-free survival than the CD10(high)AGR2(low) phenotype. The CD10(high)AGR2(high) and CD10(low)AGR2(low) phenotypes were intermediate. The CD10(high)AGR2(low) phenotype was most frequent in high-grade primary tumors. Conversely, bone and other soft tissue metastases, and derivative xenografts, expressed more AGR2 and less CD10. AGR2 protein was readily detected in tumor metastases. The CD10(high)AGR2(low) phenotype in primary tumors is predictive of poor outcome; however, the CD10(low)AGR2(high) phenotype is more common in metastases. It appears that AGR2 has a protective function in primary tumors but may have a role in the distal spread of tumor cells

    The estrogen-regulated anterior gradient 2 (AGR2) protein in breast cancer: a potential drug target and biomarker

    No full text
    Initially discovered as an estrogen-responsive gene in breast cancer cell lines, anterior gradient 2 (AGR2) is a developmentally regulated gene belonging to the protein disulfide isomerase (PDI) gene family. Developmentally, AGR2 is expressed in the mammary gland in an estrogen-dependent manner, and AGR2 knockout and overexpression mouse models indicate that the gene promotes lobuloalveolar development by stimulating cell proliferation. Although AGR2 overexpression alone seems insufficient for breast tumorigenesis in mice, several lines of investigations suggest that AGR2 promotes breast tumorigenesis. Overexpression of AGR2 in several breast cancer cell lines increases cell survival in clonogenic assays and cell proliferation, whereas AGR2 loss of function leads to decreased cell cycle progression and cell death. In addition, AGR2 was shown to promote metastasis of breast epithelial cells in an in vivo metastasis assay. As a PDI, AGR2 is thought to be involved in the unfolded protein response that alleviates endoplasmic reticulum stress. Since cancer has to overcome proteotoxic stress due to excess protein production, AGR2 may be one of many pro-survival factors recruited to assist in protein folding or degradation or both. When AGR2 is secreted, it plays a role in cellular adhesion and dissemination of metastatic tumor cells. In breast cancer, AGR2 expression is associated with estrogen receptor (ER)-positive tumors; its overexpression is a predictor of poor prognosis. The AGR2 gene is directly targeted by ER-alpha, which is preferentially bound in tumors with poor outcome. Whereas aromatase inhibitor therapy decreases AGR2 expression, tamoxifen acts as an agonist of AGR2 expression in ER-positive tumors, perhaps contributing to tamoxifen resistance. AGR2 is also overexpressed in a subset of ER-negative tumors. Furthermore, AGR2 expression is associated with the dissemination of metastatic breast cancer cells and can be used as a marker to identify circulating tumor cells and metastatic cells in sentinel lymph nodes. In conclusion, AGR2 is a promising drug target in breast cancer and may serve as a useful prognostic indicator as well as a marker of breast cancer metastasis

    Circulating tumour cells—a bona fide cause of metastatic cancer

    No full text
    Circulating tumour cells (CTCs) are emerging as important prognostic markers and have potential clinical utility as tumour biomarkers for targeted cancer therapy. Although CTCs were proposed more than 100 years ago as potential precursors that may form metastatic lesions, formal evidence that CTCs are indeed capable of initiating metastases is limited. Moreover, the process of CTCs shedding into the circulation, relocating to distant organ sites and initiating metastatic foci is complex and intrinsically inefficient. To partially explain the metastatic process, the concepts of CTCs as metastatic precursors or pre-metastatic conditioners have been proposed; however, it is questionable as to whether these are both variable pathways to metastasis or just markers of metastatic burden. This review explores the evidence for CTCs in the initiation and progression of metastatic cancer and the data supporting these different concepts in an attempt to better understand the role of CTCs in metastasis. A greater understanding of the metastatic potential of CTCs will open new avenues for therapeutic interventions in the future
    corecore