61 research outputs found

    METH-2 silencing and promoter hypermethylation in NSCLC

    Get PDF
    The antiangiogenic factor METH-2 (ADAMTS-8) was identified in a previous dual-channel cDNA microarray analysis to be at least two-fold under-represented in 85% (28 out of 33) of primary non-small-cell lung carcinomas (NSCLCs). This observation has been validated in an independent series of NSCLCs and adjacent normal tissues by comparative multiplex RT—PCR, and METH-2 mRNA expression was dramatically reduced in all 23 tumour samples analysed. Immunohistochemical analysis of the same sample set demonstrated that METH-2 was strongly expressed in 14 out of 19 normal epithelial sites examined but only one out of 20 NSCLCs. DNA methylation analysis of the proximal promoter region of this gene revealed abnormal hypermethylation in 67% of the adenocarcinomas and 50% of squamous cell carcinomas, indicating that epigenetic mechanisms are involved in silencing this gene in NSCLC. No homozygous deletions of METH-2 were found in lung cancer cell lines. Allelic imbalance in METH-2 was assessed by an intronic single nucleotide polymorphism (SNP) assay and observed in 44% of informative primary samples. In conclusion, the downregulation of METH-2 expression in primary NSCLC, often associated with promoter hypermethylation, is a frequent event, which may be related to the development of the disease

    Reconciling Apparent Conflicts between Mitochondrial and Nuclear Phylogenies in African Elephants

    Get PDF
    Conservation strategies for African elephants would be advanced by resolution of conflicting claims that they comprise one, two, three or four taxonomic groups, and by development of genetic markers that establish more incisively the provenance of confiscated ivory. We addressed these related issues by genotyping 555 elephants from across Africa with microsatellite markers, developing a method to identify those loci most effective at geographic assignment of elephants (or their ivory), and conducting novel analyses of continent-wide datasets of mitochondrial DNA. Results showed that nuclear genetic diversity was partitioned into two clusters, corresponding to African forest elephants (99.5% Cluster-1) and African savanna elephants (99.4% Cluster-2). Hybrid individuals were rare. In a comparison of basal forest “F” and savanna “S” mtDNA clade distributions to nuclear DNA partitions, forest elephant nuclear genotypes occurred only in populations in which S clade mtDNA was absent, suggesting that nuclear partitioning corresponds to the presence or absence of S clade mtDNA. We reanalyzed African elephant mtDNA sequences from 81 locales spanning the continent and discovered that S clade mtDNA was completely absent among elephants at all 30 sampled tropical forest locales. The distribution of savanna nuclear DNA and S clade mtDNA corresponded closely to range boundaries traditionally ascribed to the savanna elephant species based on habitat and morphology. Further, a reanalysis of nuclear genetic assignment results suggested that West African elephants do not comprise a distinct third species. Finally, we show that some DNA markers will be more useful than others for determining the geographic origins of illegal ivory. These findings resolve the apparent incongruence between mtDNA and nuclear genetic patterns that has confounded the taxonomy of African elephants, affirm the limitations of using mtDNA patterns to infer elephant systematics or population structure, and strongly support the existence of two elephant species in Africa

    Extensive population genetic structure in the giraffe

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (<it>Giraffa camelopardalis</it>) are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation.</p> <p>Results</p> <p>By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations.</p> <p>Conclusion</p> <p>Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate <it>in situ </it>and <it>ex situ </it>management, not only of pelage morphs, but also of local populations.</p

    Computational modelling of pathogenic protein behaviour-governing mechanisms in the brain

    No full text
    Most neurodegenerative diseases are caused by pathogenic proteins. Pathogenic protein behaviour is governed by neurobiological mechanisms which cause them to spread and accumulate in the brain, leading to cellular death and eventually atrophy. Patient data suggests atrophy loosely follows a number of spatiotemporal patterns, with different patterns associated with each neurodegenerative disease variant. It is hypothesised that the behaviour of different pathogenic protein variants is governed by different mechanisms, which could explain the pattern variety. Machine learning approaches take advantage of the pattern predictability for differential diagnosis and prognosis, but are unable to reveal new information on the underlying mechanisms, which are still poorly understood. We propose a framework where computational models of these mechanisms were created based on neurobiological literature. Competing hypotheses regarding the mechanisms were modelled and the outcomes evaluated against empirical data of Alzheimer’s disease. With this approach, we are able to characterise the impact of each mechanism on the neurodegenerative process. We also demonstrate how our framework could evaluate candidate therapies

    Radiative Wireless Power Transfer: Where We Are and Where We Want to Go

    No full text
    Providing energy to Internet of Things (IoT) apparatuses is ever more challenging. Humans are increasingly invested in the revolutionary new scenario that experts call Industry 4.0 , where billions of electronic devices are interconnected with one another. The operations of battery charging or battery replacement for these devices will soon become infeasible. As a consequence, radiative wireless power transfer (WPT) will soon become a leading technology as it is the only method available to support this technological revolution, and several information communication ­technology companies have already begun to actualize their interest in it
    corecore