38 research outputs found

    Biomechanical comparison of screw-based zoning of PHILOS and Fx proximal humerus plates

    Get PDF
    Background Treatment of proximal humerus fractures with locking plates is associated with complications. We aimed to compare the biomechanical effects of removing screws and blade of a fixed angle locking plate and hybrid blade plate, on a two-part fracture model. Methods Forty-five synthetic humeri were divided into nine groups where four were implanted with a hybrid blade plate and the remaining with locking plate, to treat a two-part surgical neck fracture. Plates’ head screws and blades were divided into zones based on their distance from fracture site. Two groups acted as a control for each plate and the remaining seven had either a vacant zone or blade swapped with screws. For elastic cantilever bending, humeral head was fixed and the shaft was displaced 5 mm in extension, flexion, valgus and varus direction. Specimens were further loaded in varus direction to investigate their plastic behaviour. Results In both plates, removal of inferomedial screws or blade led to a significantly larger drop in varus construct stiffness than other zones. In blade plate, insertion of screws in place of blade significantly increased the mean extension, flexion valgus and varus bending stiffness (24.458%/16.623%/19.493%/14.137%). In locking plate, removal of screw zones proximal to the inferomedial screws reduced extension and flexion bending stiffness by 26–33%. Conclusions Although medial support improved varus stability, two inferomedial screws were more effective than blade. Proximal screws are important for extension and flexion. Mechanical consequences of screw removal should be considered when deciding the number and choice of screws and blade in clinic

    Parametric design optimisation of proximal humerus plates based on finite element method

    Get PDF
    Optimal treatment of proximal humerus fractures remains controversial. Locking plates offer theoretical advantages but are associated with complications in the clinic. This study aimed to perform parametric design optimisation of proximal humerus plates to enhance their mechanical performance. A finite element (FE) model was developed that simulated a two-part proximal humerus fracture that had been treated with a Spatial Subchondral Support (S3) plate and subjected to varus bending. The FE model was validated against in vitro biomechanical test results. The predicted load required to apply 5 mm cantilever varus bending was only 0.728% lower. The FE model was then used to conduct a parametric optimisation study to determine the orientations of inferomedial plate screws that would yield minimum fracture gap change (i.e. optimal stability). The feasible design space was automatically identified by imposing clinically relevant constraints, and the creation process of each FE model for the design optimisation was automated. Consequently, 538 FE models were generated, from which the obtained optimal model had 4.686% lower fracture gap change (0.156 mm) than that of the manufacturer’s standard plate. Whereas its screws were oriented towards the inferomedial region and within the range of neck-shaft angle of a healthy subject. The methodology presented in this study promises future applications in patient-specific design optimisation of implants for other regions of the human body

    The use of a new locking 90° blade plate in the treatment of atrophic proximal humerus nonunions

    No full text
    This level IV case series study prospectively evaluated patients with atrophic proximal humerus nonunions stabilised with a locking 90° blade plate. All patients were women with an average age of 69 years (range 56–78). Time from trauma to nonunion treatment averaged 23 months. Five patients had had previous surgical treatments. Two patients had a history of infection and one patient with active infection was reconstructed in two stages. Follow-up averaged 22 months (range 18–36); union was achieved in all seven cases after an average of 5.85 months. The DASH score at the last follow-up averaged 25 points and Constant score averaged 72.7 points. No patient required additional procedures. At the last follow-up all patients were free of infection, and there were no cases of avascular necrosis. The results with locked 90° blade plates in atrophic nonunions of the proximal humerus in adults were favourable in this series
    corecore