112 research outputs found

    Hysteresis in a quantized, superfluid atomtronic circuit

    Full text link
    Atomtronics is an emerging interdisciplinary field that seeks new functionality by creating devices and circuits where ultra-cold atoms, often superfluids, play a role analogous to the electrons in electronics. Hysteresis is widely used in electronic circuits, e.g., it is routinely observed in superconducting circuits and is essential in rf-superconducting quantum interference devices [SQUIDs]. Furthermore, hysteresis is as fundamental to superfluidity (and superconductivity) as quantized persistent currents, critical velocity, and Josephson effects. Nevertheless, in spite of multiple theoretical predictions, hysteresis has not been previously observed in any superfluid, atomic-gas Bose-Einstein condensate (BEC). Here we demonstrate hysteresis in a quantized atomtronic circuit: a ring of superfluid BEC obstructed by a rotating weak link. We directly detect hysteresis between quantized circulation states, in contrast to superfluid liquid helium experiments that observed hysteresis directly in systems where the quantization of flow could not be observed and indirectly in systems that showed quantized flow. Our techniques allow us to tune the size of the hysteresis loop and to consider the fundamental excitations that accompany hysteresis. The results suggest that the relevant excitations involved in hysteresis are vortices and indicate that dissipation plays an important role in the dynamics. Controlled hysteresis in atomtronic circuits may prove to be a crucial feature for the development of practical devices, just as it has in electronic circuits like memory, digital noise filters (e.g., Schmitt triggers), and magnetometers (e.g., SQUIDs).Comment: 20 pages, 4 figure

    Improving diaper design to address incontinence associated dermatitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Incontinence associated dermatitis (IAD) is an inflammatory skin disease mainly triggered by prolonged skin contact with urine, feces but also liberal detergent use when cleansing the skin. To minimize the epidermal barrier challenge we optimized the design of adult incontinence briefs. In the fluid absorption area we interposed a special type of acidic, curled-type of cellulose between the top sheet in contact with the skin and the absorption core beneath containing the polyacrylate superabsorber. The intention was to minimize disturbance of the already weak acid mantle of aged skin. We also employed air-permeable side panels to minimize skin occlusion and swelling of the stratum corneum.</p> <p>Methods</p> <p>The surface pH of diapers was measured after repeated wetting with a urine substitute fluid at the level of the top sheet. Occlusive effects and hydration of the stratum corneum were measured after a 4 hour application of different side panel materials by corneometry on human volunteers. Finally, we evaluated skin symptoms in 12 patients with preexisting IAD for 21 days following the institutional switch to the optimized diaper design. Local skin care protocols remained in place unchanged.</p> <p>Results</p> <p>The improved design created a surface pH of 4.6 which was stable even after repeated wetting throughout a 5 hour period. The "standard design" briefs had values of 7.1, which is alkaline compared to the acidic surface of normal skin. Side panels made from non-woven material with an air-permeability of more than 1200 l/m<sup>2</sup>/s avoided excessive hydration of the stratum corneum when compared to the commonly employed air-impermeable plastic films. Resolution of pre-existing IAD skin lesions was noted in 8 out of 12 patients after the switch to the optimized brief design.</p> <p>Conclusions</p> <p>An improved design of adult-type briefs can create an acidic pH on the surface and breathable side panels avoid over-hydration of the stratum corneum and occlusion. This may support the epidermal barrier function and may help to reduce the occurrence of IAD.</p

    Low-threshold ultrahigh-energy neutrino search with the Askaryan Radio Array

    Get PDF
    In the pursuit of the measurement of the still-elusive ultrahigh-energy (UHE) neutrino flux at energies of order EeV, detectors using the in-ice Askaryan radio technique have increasingly targeted lower trigger thresholds. This has led to improved trigger-level sensitivity to UHE neutrinos. Working with data collected by the Askaryan Radio Array (ARA), we search for neutrino candidates at the lowest threshold achieved to date, leading to improved analysis-level sensitivities. A neutrino search on a data set with 208.7 days of livetime from the reduced-threshold fifth ARA station is performed, achieving a 68% analysis efficiency over all energies on a simulated mixed-composition neutrino flux with an expected background of 0.10-0.04+0.06 events passing the analysis. We observe one event passing our analysis and proceed to set a neutrino flux limit using a Feldman-Cousins construction. We show that the improved trigger-level sensitivity can be carried through an analysis, motivating the phased array triggering technique for use in future radio-detection experiments. We also include a projection using all available data from this detector. Finally, we find that future analyses will benefit from studies of events near the surface to fully understand the background expected for a large-scale detector

    Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex

    Get PDF
    The loss of dopamine (DA) in Parkinson’s is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1

    Akt1-associated actomyosin remodelling is required for nuclear lamina dispersal and nuclear shrinkage in epidermal terminal differentiation

    Get PDF
    Keratinocyte cornification and epidermal barrier formation are tightly controlled processes, which require complete degradation of intracellular organelles, including removal of keratinocyte nuclei. Keratinocyte nuclear destruction requires Akt1-dependent phosphorylation and degradation of the nuclear lamina protein, Lamin A/C, essential for nuclear integrity. However, the molecular mechanisms that result in complete nuclear removal and their regulation are not well defined. Post-confluent cultures of rat epidermal keratinocytes (REKs) undergo spontaneous and complete differentiation, allowing visualisation and perturbation of the differentiation process in vitro. We demonstrate that there is dispersal of phosphorylated Lamin A/C to structures throughout the cytoplasm in differentiating keratinocytes. We show that the dispersal of phosphorylated Lamin A/C is Akt1-dependent and these structures are specific for the removal of Lamin A/C from the nuclear lamina; nuclear contents and Lamin B were not present in these structures. Immunoprecipitation identified a group of functionally related Akt1 target proteins involved in Lamin A/C dispersal, including actin, which forms cytoskeletal microfilaments, Arp3, required for actin filament nucleation, and Myh9, a component of myosin IIa, a molecular motor that can translocate along actin filaments. Disruption of actin filament polymerisation, nucleation or myosin IIa activity prevented formation and dispersal of cytoplasmic Lamin A/C structures. Live imaging of keratinocytes expressing fluorescently tagged nuclear proteins showed a nuclear volume reduction step taking less than 40 min precedes final nuclear destruction. Preventing Akt1-dependent Lamin A/C phosphorylation and disrupting cytoskeletal Akt1-associated proteins prevented nuclear volume reduction. We propose keratinocyte nuclear destruction and differentiation requires myosin II activity and the actin cytoskeleton for two intermediate processes: Lamin A/C dispersal and rapid nuclear volume reduction

    Artificial Skin – Culturing of Different Skin Cell Lines for Generating an Artificial Skin Substitute on Cross-Weaved Spider Silk Fibres

    Get PDF
    Background: In the field of Plastic Reconstructive Surgery the development of new innovative matrices for skin repair is in urgent need. The ideal biomaterial should promote attachment, proliferation and growth of cells. Additionally, it should degrade in an appropriate time period without releasing harmful substances, but not exert a pathological immune response. Spider dragline silk from Nephila spp meets these demands to a large extent. Methodology/Principal Findings: Native spider dragline silk, harvested directly out of Nephila spp spiders, was woven on steel frames. Constructs were sterilized and seeded with fibroblasts. After two weeks of cultivating single fibroblasts, keratinocytes were added to generate a bilayered skin model, consisting of dermis and epidermis equivalents. For the next three weeks, constructs in co-culture were lifted on an originally designed setup for air/liquid interface cultivation. After the culturing period, constructs were embedded in paraffin with an especially developed program for spidersilk to avoid supercontraction. Paraffin cross-sections were stained in Haematoxylin & Eosin (H&E) for microscopic analyses. Conclusion/Significance: Native spider dragline silk woven on steel frames provides a suitable matrix for 3 dimensional skin cell culturing. Both fibroblasts and keratinocytes cell lines adhere to the spider silk fibres and proliferate. Guided by the spider silk fibres, they sprout into the meshes and reach confluence in at most one week. A well-balanced, bilayered cocultivation in two continuously separated strata can be achieved by serum reduction, changing the medium conditions and the cultivation period at the air/liquid interphase. Therefore spider silk appears to be a promising biomaterial for the enhancement of skin regeneration

    The Calibration of the Geometry and Antenna delay in Askaryan Radio Array Station 4 and 5

    Get PDF
    The Askaryan Radio Array (ARA) experiment at the South Pole is designed to detect the radio signals produced by ultra high energy cosmic neutrino interactions in the ice. There are 5 independent ARA stations, one of which (A5) includes a low-threshold phased array trigger string. Each ARA station is designed to work as an autonomous detector. The Data Acquisition System in all ARA stations is equipped with the Ice Ray Sampler second-generation (IRS2) chip, a custom-made, application-specific integrated circuit (ASIC) for high-speed sampling and digitization. In this contribution, we describe the methodology used to calibrate the IRS2 digitizer chip and the station geometry, namely the relative timing between each pair of ARA antennas, deployed at 200 m below the Antarctic ice surface, and their geometrical positions in the ice, for ARA stations 4 and 5. Our calibration allows for proper timing correlations between incoming signals, which is crucial for radio vertex reconstruction and thus detection of ultra high energy neutrinos through the Askaryan effect. We achieve a signal timing precision on a sub-nanosecond level and an antenna position precision within 10 cm

    Implementing a Low-Threshold Analysis with the Askaryan Radio Array (ARA)

    Get PDF
    The Askaryan Radio Array (ARA) is a ground-based radio detector at the South Pole designed to capture Askaryan emission from ultra-high energy neutrinos interacting within the Antarctic ice. The newest ARA station has been equipped with a phased array trigger, in which radio signals in multiple antennas are summed in predetermined directions prior to the trigger. In this way, impulsive signals add coherently, while noise likely does not, allowing the trigger threshold to be lower than a traditional ARA station. Early results on just a fraction of available data from this new system prove the feasibility of a low-threshold analysis

    A neural network based UHE neutrino reconstruction method for the Askaryan Radio Array (ARA)

    Get PDF
    The Askaryan Radio Array (ARA) is an ultra-high energy (UHE) neutrino (Eν > 1017 eV) detector at South Pole. ARA aims to utilize radio signals detected from UHE neutrino interactions in the glacial ice to infer properties about the interaction vertex as well as the incident neutrino. To retrieve these properties from experiment data, the first step is to extract timing, amplitude and frequency information from waveforms of different antennas buried in the deep ice. These features can then be utilized in a neural network to reconstruct the neutrino interaction vertex position, incoming neutrino direction and shower energy. So far, vertex can be reconstructed through interferometry while neutrino reconstruction is still under investigation. Here I will present a solution based on multi-task deep neural networks which can perform reconstruction of both vertex and incoming neutrinos with a reasonable precision. After training, this solution is capable of rapid reconstructions (e.g. 0.1 ms/event compared to 10000 ms/event in a conventional routine) useful for trigger and filter decisions, and can be easily generalized to different station configurations for both design and analysis purposes
    corecore