120 research outputs found

    Transgene integration - an analysis in autotransgenic Labeo rohita Hamilton (Pisces: Cyprinidae)

    Get PDF
    Transgenic Labeo rohita founder population was analyzed for the presence of autotransgene having histone 3 promoter and growth hormone (GH) cDNA (LRH3-GHcDNA) or total GH gene (LRH3-GH2.8) by PCR with transgene specific primers. Transgene specific amplification was seen with LRH3-GHcDNA in five out of seven individuals and all three fishes with LRH3-GH2.8, indicating their transgenic nature. Transgene integration was also studied by Southern hybridization of DNA isolated from blood of the transgenic fishes with two different probes (histone 3 promoter and cDNA of L. rohita). Autotransgene integration was confirmed in all PCR positive transgenic individuals. The site of integration of the transgene in the genome of the four transgenic fish could be determined by inverse PCR. Two individuals showed integration at the same site whereas in the remaining two individuals the integration sites were different

    FGF2 regulates melanocytes viability through the STAT3-transactivated PAX3 transcription

    Get PDF
    PAX3 (paired box 3) is known to have an important role in melanocyte development through modulation of microphthalmia-associated transcription factor transcription. Here we found that PAX3 transcriptional activity could be regulated through FGF2 (basic fibroblast growth factor)-STAT3 (signal transducer and activator of transcription 3) signaling in the pigment cells. To study its function in vivo, we have generated a transgenic mouse model expressing PAX3 driven by tyrosinase promoter in a tissue-specific fashion. These animals exhibit hyperpigmentation in the epidermis, evident in the skin color of their ears and tails. We showed that the darker skin color results from both increased melanocyte numbers and melanin synthesis. Together, our study delineated a novel pathway in the melanocyte lineage, linking FGF2-STAT3 signaling to increased PAX3 transcription. Moreover, our results suggest that this pathway might contribute to the regulation of melanocyte numbers and melanin levels, and thereby provide an alternative strategy to induce pigmentation

    Somatic sex-specific transcriptome differences in Drosophila revealed by whole transcriptome sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding animal development and physiology at a molecular-biological level has been advanced by the ability to determine at high resolution the repertoire of mRNA molecules by whole transcriptome resequencing. This includes the ability to detect and quantify rare abundance transcripts and isoform-specific mRNA variants produced from a gene.</p> <p>The sex hierarchy consists of a pre-mRNA splicing cascade that directs the production of sex-specific transcription factors that specify nearly all sexual dimorphism. We have used deep RNA sequencing to gain insight into how the Drosophila sex hierarchy generates somatic sex differences, by examining gene and transcript isoform expression differences between the sexes in adult head tissues.</p> <p>Results</p> <p>Here we find 1,381 genes that differ in overall expression levels and 1,370 isoform-specific transcripts that differ between males and females. Additionally, we find 512 genes not regulated downstream of <it>transformer </it>that are significantly more highly expressed in males than females. These 512 genes are enriched on the × chromosome and reside adjacent to dosage compensation complex entry sites, which taken together suggests that their residence on the × chromosome might be sufficient to confer male-biased expression. There are no transcription unit structural features, from a set of features, that are robustly significantly different in the genes with significant sex differences in the ratio of isoform-specific transcripts, as compared to random isoform-specific transcripts, suggesting that there is no single molecular mechanism that generates isoform-specific transcript differences between the sexes, even though the sex hierarchy is known to include three pre-mRNA splicing factors.</p> <p>Conclusions</p> <p>We identify thousands of genes that show sex-specific differences in overall gene expression levels, and identify hundreds of additional genes that have differences in the abundance of isoform-specific transcripts. No transcription unit structural feature was robustly enriched in the sex-differentially expressed transcript isoforms. Additionally, we found that many genes with male-biased expression were enriched on the × chromosome and reside adjacent to dosage compensation entry sites, suggesting that differences in sex chromosome composition contributes to dimorphism in gene expression. Taken together, this study provides new insight into the molecular underpinnings of sexual differentiation.</p

    Highly pathogenic avian influenza virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses

    Get PDF
    Highly pathogenic avian influenza (HPAI) H5N1 viruses cause severe infection in chickens at near complete mortality, but corresponding infection in ducks is typically mild or asymptomatic. To understand the underlying molecular differences in host response, primary chicken and duck lung cells, infected with two HPAI H5N1 viruses and a low pathogenicity avian influenza (LPAI) H2N3 virus, were subjected to RNA expression profiling. Chicken cells but not duck cells showed highly elevated immune and pro-inflammatory responses following HPAI virus infection. HPAI H5N1 virus challenge studies in chickens and ducks corroborated the in vitro findings. To try to determine the underlying mechanisms, we investigated the role of signal transducer and activator of transcription-3 (STAT-3) in mediating pro-inflammatory response to HPAIV infection in chicken and duck cells. We found that STAT-3 expression was down-regulated in chickens but was up-regulated or unaffected in ducks in vitro and in vivo following H5N1 virus infection. Low basal STAT-3 expression in chicken cells was completely inhibited by H5N1 virus infection. By contrast, constitutively active STAT-3 detected in duck cells was unaffected by H5N1 virus infection. Transient constitutively-active STAT-3 transfection in chicken cells significantly reduced pro-inflammatory response to H5N1 virus infection; on the other hand, chemical inhibition of STAT-3 activation in duck cells increased pro-inflammatory gene expression following H5N1 virus infection. Collectively, we propose that elevated pro-inflammatory response in chickens is a major pathogenicity factor of HPAI H5N1 virus infection, mediated in part by the inhibition of STAT-3

    Experimental Microbial Evolution of Extremophiles

    Get PDF
    Experimental microbial evolutions (EME) involves studying closely a microbial population after it has been through a large number of generations under controlled conditions (Kussell 2013). Adaptive laboratory evolution (ALE) selects for fitness under experimentally imposed conditions (Bennett and Hughes 2009; Dragosits and Mattanovich 2013). However, experimental evolution studies focusing on the contributions of genetic drift and natural mutation rates to evolution are conducted under non-selective conditions to avoid changes imposed by selection (Hindré et al. 2012). To understand the application of experimental evolutionary methods to extremophiles it is essential to consider the recent growth in this field over the last decade using model non-extremophilic microorganisms. This growth reflects both a greater appreciation of the power of experimental evolution for testing evolutionary hypotheses and, especially recently, the new power of genomic methods for analyzing changes in experimentally evolved lineages. Since many crucial processes are driven by microorganisms in nature, it is essential to understand and appreciate how microbial communities function, particularly with relevance to selection. However, many theories developed to understand microbial ecological patterns focus on the distribution and the structure of diversity within a microbial population comprised of single species (Prosser et al. 2007). Therefore an understanding of the concept of species is needed. A common definition of species using a genetic concept is a group of interbreeding individuals that is isolated from other such groups by barriers of recombination (Prosser et al. 2007). An alternative ecological species concept defines a species as set of individuals that can be considered identical in all relevant ecological traits (Cohan 2001). This is particularly important because of the abundance and deep phylogenetic complexity of microbial communities. Cohan postulated that “bacteria occupy discrete niches and that periodic selection will purge genetic variation within each niche without preventing divergence between the inhabitants of different niches”. The importance of gene exchange mechanisms likely in bacteria and archaea and therefore extremophiles, arises from the fact that their genomes are divided into two distinct parts, the core genome and the accessory genome (Cohan 2001). The core genome consists of genes that are crucial for the functioning of an organism and the accessory genome consists of genes that are capable of adapting to the changing ecosystem through gain and loss of function. Strains that belong to the same species can differ in the composition of accessory genes and therefore their capability to adapt to changing ecosystems (Cohan 2001; Tettelin et al. 2005; Gill et al. 2005). Additional ecological diversity exists in plasmids, transposons and pathogenicity islands as they can be easily shared in a favorable environment but still be absent in the same species found elsewhere (Wertz et al. 2003). This poses a major challenge for studying ALE and community microbial ecology indicating a continued need to develop a fitting theory that connects the fluid nature of microbial communities to their ecology (Wertz et al. 2003; Coleman et al. 2006). Understanding the nature and contribution of different processes that determine the frequencies of genes in any population is the biggest concern in population and evolutionary genetics (Prosser et al. 2007) and it is critical for an understanding of experimental evolution

    Hunger Artists: Yeast Adapted to Carbon Limitation Show Trade-Offs under Carbon Sufficiency

    Get PDF
    As organisms adaptively evolve to a new environment, selection results in the improvement of certain traits, bringing about an increase in fitness. Trade-offs may result from this process if function in other traits is reduced in alternative environments either by the adaptive mutations themselves or by the accumulation of neutral mutations elsewhere in the genome. Though the cost of adaptation has long been a fundamental premise in evolutionary biology, the existence of and molecular basis for trade-offs in alternative environments are not well-established. Here, we show that yeast evolved under aerobic glucose limitation show surprisingly few trade-offs when cultured in other carbon-limited environments, under either aerobic or anaerobic conditions. However, while adaptive clones consistently outperform their common ancestor under carbon limiting conditions, in some cases they perform less well than their ancestor in aerobic, carbon-rich environments, indicating that trade-offs can appear when resources are non-limiting. To more deeply understand how adaptation to one condition affects performance in others, we determined steady-state transcript abundance of adaptive clones grown under diverse conditions and performed whole-genome sequencing to identify mutations that distinguish them from one another and from their common ancestor. We identified mutations in genes involved in glucose sensing, signaling, and transport, which, when considered in the context of the expression data, help explain their adaptation to carbon poor environments. However, different sets of mutations in each independently evolved clone indicate that multiple mutational paths lead to the adaptive phenotype. We conclude that yeasts that evolve high fitness under one resource-limiting condition also become more fit under other resource-limiting conditions, but may pay a fitness cost when those same resources are abundant

    Insights into mammalian transcription control by systematic analysis of ChIP sequencing data

    Get PDF
    Abstract Background Transcription regulation is a major controller of gene expression dynamics during development and disease, where transcription factors (TFs) modulate expression of genes through direct or indirect DNA interaction. ChIP sequencing has become the most widely used technique to get a genome wide view of TF occupancy in a cell type of interest, mainly due to established standard protocols and a rapid decrease in the cost of sequencing. The number of available ChIP sequencing data sets in public domain is therefore ever increasing, including data generated by individual labs together with consortia such as the ENCODE project. Results A total of 1735 ChIP-sequencing datasets in mouse and human cell types and tissues were used to perform bioinformatic analyses to unravel diverse features of transcription control. 1- We used the Heat*seq webtool to investigate global relations across the ChIP-seq samples. 2- We demonstrated that factors have a specific genomic location preferences that are, for most factors, conserved across species. 3- Promoter proximal binding of factors was more conserved across cell types while the distal binding sites are more cell type specific. 4- We identified combinations of factors preferentially acting together in a cellular context. 5- Finally, by integrating the data with disease-associated gene loci from GWAS studies, we highlight the value of this data to associate novel regulators to disease. Conclusion In summary, we demonstrate how ChIP sequencing data integration and analysis is powerful to get new insights into mammalian transcription control and demonstrate the utility of various bioinformatic tools to generate novel testable hypothesis using this public resource
    corecore