36 research outputs found

    2019 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations : summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces

    No full text
    The International Liaison Committee on Resuscitation has initiated a continuous review of new, peer-reviewed, published cardiopulmonary resuscitation science. This is the third annual summary of the International Liaison Committee on Resuscitation International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. It addresses the most recent published resuscitation evidence reviewed by International Liaison Committee on Resuscitation Task Force science experts. This summary addresses the role of cardiac arrest centers and dispatcher-assisted cardiopulmonary resuscitation, the role of extracorporeal cardiopulmonary resuscitation in adults and children, vasopressors in adults, advanced airway interventions in adults and children, targeted temperature management in children after cardiac arrest, initial oxygen concentration during resuscitation of newborns, and interventions for presyncope by first aid providers. Members from 6 International Liaison Committee on Resuscitation task forces have assessed, discussed, and debated the certainty of the evidence on the basis of the Grading of Recommendations, Assessment, Development, and Evaluation criteria, and their statements include consensus treatment recommendations. Insights into the deliberations of the task forces are provided in the Justification and Evidence to Decision Framework Highlights sections. The task forces also listed priority knowledge gaps for further research

    Physiologic and molecular consequences of endothelial Bmpr2 mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary arterial hypertension (PAH) is thought to be driven by dysfunction of pulmonary vascular microendothelial cells (PMVEC). Most hereditary PAH is associated with BMPR2 mutations. However, the physiologic and molecular consequences of expression of BMPR2 mutations in PMVEC are unknown.</p> <p>Methods</p> <p>In vivo experiments were performed on adult mice with conditional endothelial-specific expression of the truncation mutation Bmpr2<sup>delx4+</sup>, with age-matched transactivator-only mice as controls. Phenotype was assessed by RVSP, counts of muscularized vessels and proliferating cells, and staining for thromboses, inflammatory cells, and apoptotic cells. The effects of BMPR2 knockdown in PMVEC by siRNA on rates of apoptosis were assessed. Affymetrix expression arrays were performed on PMVEC isolated and cultured from triple transgenic mice carrying the immortomouse gene, a transactivator, and either control, Bmpr2<sup>delx4+ </sup>or Bmpr2<sup>R899X </sup>mutation.</p> <p>Results</p> <p>Transgenic mice showed increased RVSP and corresponding muscularization of small vessels, with histologic alterations including thrombosis, increased inflammatory cells, increased proliferating cells, and a moderate increase in apoptotic cells. Expression arrays showed alterations in specific pathways consistent with the histologic changes. Bmpr2<sup>delx4+ </sup>and Bmpr2<sup>R899X </sup>mutations resulted in very similar alterations in proliferation, apoptosis, metabolism, and adhesion; Bmpr2<sup>delx4+ </sup>cells showed upregulation of platelet adhesion genes and cytokines not seen in Bmpr2<sup>R899X </sup>PMVEC. Bmpr2 mutation in PMVEC does not cause a loss of differentiation markers as was seen with Bmpr2 mutation in smooth muscle cells.</p> <p>Conclusions</p> <p>Bmpr2 mutation in PMVEC <it>in vivo </it>may drive PAH through multiple, potentially independent, downstream mechanisms, including proliferation, apoptosis, inflammation, and thrombosis.</p

    Screening out irrelevant cell-based models of disease

    Get PDF
    The common and persistent failures to translate promising preclinical drug candidates into clinical success highlight the limited effectiveness of disease models currently used in drug discovery. An apparent reluctance to explore and adopt alternative cell-and tissue-based model systems, coupled with a detachment from clinical practice during assay validation, contributes to ineffective translational research. To help address these issues and stimulate debate, here we propose a set of principles to facilitate the definition and development of disease-relevant assays, and we discuss new opportunities for exploiting the latest advances in cell-based assay technologies in drug discovery, including induced pluripotent stem cells, three-dimensional (3D) co-culture and organ-on-a-chip systems, complemented by advances in single-cell imaging and gene editing technologies. Funding to support precompetitive, multidisciplinary collaborations to develop novel preclinical models and cell-based screening technologies could have a key role in improving their clinical relevance, and ultimately increase clinical success rates

    Cross-species infections of cultured cells by hepatitis E virus and discovery of an infectious virus–host recombinant

    No full text
    The RNA virus, hepatitis E virus (HEV) is the most or second-most important cause of acute clinical hepatitis in adults throughout much of Asia, the Middle East, and Africa. In these regions it is an important cause of acute liver failure, especially in pregnant women who have a mortality rate of 20–30%. Until recently, hepatitis E was rarely identified in industrialized countries, but Hepatitis E now is reported increasingly throughout Western Europe, some Eastern European countries, and Japan. Most of these cases are caused by genotype 3, which is endemic in swine, and these cases are thought to be zoonotically acquired. However, transmission routes are not well understood. HEV that infect humans are divided into nonzoonotic (types 1, 2) and zoonotic (types 3, 4) genotypes. HEV cell culture is inefficient and limited, and thus far HEV has been cultured only in human cell lines. The HEV strain Kernow-C1 (genotype 3) isolated from a chronically infected patient was used to identify human, pig, and deer cell lines permissive for infection. Cross-species infections by genotypes 1 and 3 were studied with this set of cultures. Adaptation of the Kernow-C1 strain to growth in human hepatoma cells selected for a rare virus recombinant that contained an insertion of 174 ribonucleotides (58 amino acids) of a human ribosomal protein gene

    Strategies to discover regulatory circuits of the mammalian immune system

    No full text
    Recent advances in technologies for genome- and proteome-scale measurements and perturbations promise to accelerate discovery in every aspect of biology and medicine. Although such rapid technological progress provides a tremendous opportunity, it also demands that we learn how to use these tools effectively. One application with great potential to enhance our understanding of biological systems is the unbiased reconstruction of genetic and molecular networks. Cells of the immune system provide a particularly useful model for developing and applying such approaches. Here, we review approaches for the reconstruction of signalling and transcriptional networks, with a focus on applications in the mammalian innate immune system.National Institutes of Health (U.S.)Howard Hughes Medical InstituteBroad Institute of MIT and Harvar

    Differential electron flow around photosystem I by two C(4)-photosynthetic-cell-specific ferredoxins

    No full text
    In the C(4) plant maize (Zea mays L.), two ferredoxin isoproteins, Fd I and Fd II, are expressed specifically in mesophyll and bundle-sheath cells, respectively. cDNAs for these ferredoxins were introduced separately into the cyanobacterium Plectonema boryanum with a disrupted endogenous ferredoxin gene, yielding TM202 and KM2-9 strains expressing Fd I and Fd II. The growth of TM202 was retarded under high light (130 µmol/m(2)/s), whereas KM2-9 grew at a normal rate but exhibited a nitrogen-deficient phenotype. Measurement of photosynthetic O(2) evolution revealed that the reducing power was not efficiently partitioned into nitrogen assimilation in KM2-9. After starvation of the cells in darkness, the P700 oxidation level under far-red illumination increased significantly in TM202. However, it remained low in KM2-9, indicating an active cyclic electron flow. In accordance with this, the cellular ratio of ATP/ADP increased and that of NADPH/NADP(+) decreased in KM2-9 as compared with TM202. These results demonstrated that the two cell type-specific ferredoxins differentially modulate electron flow around photosystem I
    corecore