68 research outputs found

    The burden of anxiety, depression, and stress, along with the prevalence of symptoms of PTSD, and perceptions of the drivers of psychological harms, as perceived by doctors and nurses working in ICUs in Nepal during the COVID-19 pandemic; a mixed method evaluation

    Get PDF
    Background: The COVID-19 pandemic resulted in significant physical and psychological impacts for survivors, and for the healthcare professionals caring for patients. Nurses and doctors in critical care faced longer working hours, increased burden of patients, and limited resources, all in the context of personal social isolation and uncertainties regarding cross-infection. We evaluated the burden of anxiety, depression, stress, post-traumatic stress disorder (PTSD), and alcohol dependence among doctors and nurses working in intensive care units (ICUs) in Nepal and explored the individual and social drivers for these impacts. Methods: We conducted a mixed-methods study in Nepal, using an online survey to assess psychological well-being and semi-structured interviews to explore perceptions as to the drivers of anxiety, stress, and depression. Participants were recruited from existing national critical care professional organisations in Nepal and using a snowball technique. The online survey comprised of validated assessment tools for anxiety, depression, stress, PTSD, and alcohol dependence; all tools were analysed using published guidelines. Interviews were analysed using rapid appraisal techniques, and themes regarding the drivers for psychological distress were explored. Results: 134 respondents (113 nurses, 21 doctors) completed the online survey. Twenty-eight (21%) participants experienced moderate to severe symptoms of depression; 67 (50%) experienced moderate or severe symptoms of anxiety; 114 (85%) had scores indicative of moderate to high levels of stress; 46 out of 100 reported symptoms of PTSD. Compared to doctors, nurses experienced more severe symptoms of depression, anxiety, and PTSD, whereas doctors experienced higher levels of stress than nurses. Most (95%) participants had scores indicative of low risk of alcohol dependence. Twenty participants were followed up in interviews. Social stigmatism, physical and emotional safety, enforced role change and the absence of organisational support were perceived drivers for poor psychological well-being. Conclusion: Nurses and doctors working in ICU during the COVID-19 pandemic sustained psychological impacts, manifesting as stress, anxiety, and for some, symptoms of PTSD. Nurses were more vulnerable. Individual characteristics and professional inequalities in healthcare may be potential modifiable factors for policy makers seeking to mitigate risks for healthcare providers

    Irreversible Pulmonary Hypertension Associated with the use of Interferon Alpha for Chronic Hepatitis C

    Get PDF
    The interferons are a complex group of virally induced proteins produced by activated macrophages and lymphocytes, which have become the mainstay of therapy for hepatitis C infection. Sustained viral response (SVR) rates in noncirrhotic patients vary from 40–80% with interferon-based therapy. This, along with transplantation, has drastically changed the course of hepatitis C virus (HCV) infection over the last two decades. Numerous side effects associated with interferon therapy have been reported. These range from transient flu-like symptoms to serious effects such as cardiac arrhythmias, cardiomyopathy, renal and liver failure, polyneuropathy, and myelosuppression. Pulmonary side effects including pneumonitis, pulmonary fibrosis, and reversible pulmonary hypertension have been reported. Herein, we present four cases in which irreversible pulmonary hypertension was diagnosed after prolonged treatment with interferon alpha. In each case, other causes of pulmonary hypertension were systematically eliminated. Pulmonary artery hypertension, which may be irreversible, should be considered in patients being treated with interferon alpha who present with exertional dyspnea and do not have a readily identifiable inflammatory or thromboembolic cause

    Different Patterns of Evolution in the Centromeric and Telomeric Regions of Group A and B Haplotypes of the Human Killer Cell Ig-Like Receptor Locus

    Get PDF
    The fast evolving human KIR gene family encodes variable lymphocyte receptors specific for polymorphic HLA class I determinants. Nucleotide sequences for 24 representative human KIR haplotypes were determined. With three previously defined haplotypes, this gave a set of 12 group A and 15 group B haplotypes for assessment of KIR variation. The seven gene-content haplotypes are all combinations of four centromeric and two telomeric motifs. 2DL5, 2DS5 and 2DS3 can be present in centromeric and telomeric locations. With one exception, haplotypes having identical gene content differed in their combinations of KIR alleles. Sequence diversity varied between haplotype groups and between centromeric and telomeric halves of the KIR locus. The most variable A haplotype genes are in the telomeric half, whereas the most variable genes characterizing B haplotypes are in the centromeric half. Of the highly polymorphic genes, only the 3DL3 framework gene exhibits a similar diversity when carried by A and B haplotypes. Phylogenetic analysis and divergence time estimates, point to the centromeric gene-content motifs that distinguish A and B haplotypes having emerged ∼6 million years ago, contemporaneously with the separation of human and chimpanzee ancestors. In contrast, the telomeric motifs that distinguish A and B haplotypes emerged more recently, ∼1.7 million years ago, before the emergence of Homo sapiens. Thus the centromeric and telomeric motifs that typify A and B haplotypes have likely been present throughout human evolution. The results suggest the common ancestor of A and B haplotypes combined a B-like centromeric region with an A-like telomeric region

    The Dopamine Augmenter L-DOPA Does Not Affect Positive Mood in Healthy Human Volunteers

    Get PDF
    Dopamine neurotransmission influences approach toward rewards and reward-related cues. The best cited interpretation of this effect proposes that dopamine mediates the pleasure that commonly accompanies reward. This hypothesis has received support in some animal models and a few studies in humans. However, direct assessments of the effect of transiently increasing dopamine neurotransmission have been largely limited to the use of psychostimulant drugs, which elevate brain levels of multiple neurotransmitters in addition to dopamine. In the present study we tested the effect of more selectively elevating dopamine neurotransmission, as produced by administration of the immediate dopamine precursor, L-DOPA (0, 100/25, 200/50 mg, Sinemet), in healthy human volunteers. Neither dose altered positive mood. The results suggest that dopamine neurotransmission does not directly influence positive mood in humans

    Gene Expression during the Generation and Activation of Mouse Neutrophils: Implication of Novel Functional and Regulatory Pathways

    Get PDF
    As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1β, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the ImmGen regulatory model provide a basis for additional hypothesis-based research on the importance of changes in gene expression in neutrophils in different conditions

    Concerted Regulation of cGMP and cAMP Phosphodiesterases in Early Cardiac Hypertrophy Induced by Angiotensin II

    Get PDF
    Left ventricular hypertrophy leads to heart failure and represents a high risk leading to premature death. Cyclic nucleotides (cAMP and cGMP) play a major role in heart contractility and cyclic nucleotide phosphodiesterases (PDEs) are involved in different stages of advanced cardiac diseases. We have investigated their contributions in the very initial stages of left ventricular hypertrophy development. Wistar male rats were treated over two weeks by chronic infusion of angiotensin II using osmotic mini-pumps. Left cardiac ventricles were used as total homogenates for analysis. PDE1 to PDE5 specific activities and protein and mRNA expressions were explored

    Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Get PDF
    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers

    Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns.

    Get PDF
    Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells), correlating with two different kinds of promoters and 5' untranslated regions (5'UTR). However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood.This is the final published version. It was originally published by PLOS in PLOS Genetics here: http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004417
    • …
    corecore