1,018 research outputs found

    A systematic review of correlates of sedentary behaviour in adults aged 18–65 years: a socio-ecological approach

    Get PDF
    Background: Recent research shows that sedentary behaviour is associated with adverse cardio-metabolic consequences even among those considered sufficiently physically active. In order to successfully develop interventions to address this unhealthy behaviour, factors that influence sedentariness need to be identified and fully understood. The aim of this review is to identify individual, social, environmental, and policy-related determinants or correlates of sedentary behaviours among adults aged 18-65 years. Methods: PubMed, Embase, CINAHL, PsycINFO and Web of Science were searched for articles published between January 2000 and September 2015. The search strategy was based on four key elements and their synonyms: (a) sedentary behaviour (b) correlates (c) types of sedentary behaviours (d) types of correlates. Articles were included if information relating to sedentary behaviour in adults (18-65 years) was reported. Studies on samples selected by disease were excluded. The full protocol is available from PROSPERO (PROSPERO 2014:CRD42014009823). Results: 74 original studies were identified out of 4041: 71 observational, two qualitative and one experimental study. Sedentary behaviour was primarily measured as self-reported screen leisure time and total sitting time. In 15 studies, objectively measured total sedentary time was reported: accelerometry (n = 14) and heart rate (n = 1). Individual level factors such as age, physical activity levels, body mass index, socio-economic status and mood were all significantly correlated with sedentariness. A trend towards increased amounts of leisure screen time was identified in those married or cohabiting while having children resulted in less total sitting time. Several environmental correlates were identified including proximity of green space, neighbourhood walkability and safety and weather. Conclusions: Results provide further evidence relating to several already recognised individual level factors and preliminary evidence relating to social and environmental factors that should be further investigated. Most studies relied upon cross-sectional design limiting causal inference and the heterogeneity of the sedentary measures prevented direct comparison of findings. Future research necessitates longitudinal study designs, exploration of policy-related factors, further exploration of environmental factors, analysis of inter-relationships between identified factors and better classification of sedentary behaviour domains

    Cyr61/CCN1 Is Regulated by Wnt/β-Catenin Signaling and Plays an Important Role in the Progression of Hepatocellular Carcinoma

    Get PDF
    Abnormal activation of the canonical Wnt signaling pathway has been implicated in carcinogenesis. Transcription of Wnt target genes is regulated by nuclear β-catenin, whose over-expression is observed in Hepatocellular Carcinoma (HCC) tissue. Cyr61, a member of the CCN complex family of multifunctional proteins, is also found over-expressed in many types of tumor and plays dramatically different roles in tumorigenesis. In this study, we investigated the relationship between Cyr61 and β-catenin in HCC. We found that while Cyr61 protein was not expressed at a detectable level in the liver tissue of healthy individuals, its expression level was elevated in the HCC and HCC adjacent tissues and was markedly increased in cancer-adjacent hepatic cirrhosis tissue. Over-expression of Cyr61 was positively correlated with increased levels of β-catenin in human HCC samples. Activation of β-catenin signaling elevated the mRNA level of Cyr61 in HepG2 cells, while inhibition of β-catenin signaling reduced both mRNA and protein levels of Cyr61. We identified two TCF4-binding elements in the promoter region of human Cyr61 gene and demonstrated that β-catenin/TCF4 complex specifically bound to the Cyr61 promoter in vivo and directly regulated its promoter activity. Furthermore, we found that over-expression of Cyr61 in HepG2 cells promoted the progression of HCC xenografts in SCID mice. These findings indicate that Cyr61 is a direct target of β-catenin signaling in HCC and may play an important role in the progression of HCC

    Paclitaxel loading in PLGA nanospheres affected the in vitro drug cell accumulation and antiproliferative activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>PTX is one of the most widely used drug in oncology due to its high efficacy against solid tumors and several hematological cancers. PTX is administered in a formulation containing 1:1 Cremophor<sup>® </sup>EL (polyethoxylated castor oil) and ethanol, often responsible for toxic effects. Its encapsulation in colloidal delivery systems would gain an improved targeting to cancer cells, reducing the dose and frequency of administration.</p> <p>Methods</p> <p>In this paper PTX was loaded in PLGA NS. The activity of PTX-NS was assessed in vitro against thyroid, breast and bladder cancer cell lines in cultures. Cell growth was evaluated by MTS assay, intracellular NS uptake was performed using coumarin-6 labelled NS and the amount of intracellular PTX was measured by HPLC.</p> <p>Results</p> <p>NS loaded with 3% PTX (w/w) had a mean size < 250 nm and a polydispersity index of 0.4 after freeze-drying with 0.5% HP-Cyd as cryoprotector. PTX encapsulation efficiency was 30% and NS showed a prolonged drug release in vitro. An increase of the cytotoxic effect of PTX-NS was observed with respect to free PTX in all cell lines tested.</p> <p>Conclusion</p> <p>These findings suggest that the greater biological effect of PTX-NS could be due to higher uptake of the drug inside the cells as shown by intracellular NS uptake and cell accumulation studies.</p

    Critical Role of TCF-1 in Repression of the IL-17 Gene

    Get PDF
    Overwhelming activation of IL-17, a gene involved in inflammation, leads to exaggerated Th17 responses associated with numerous autoimmune conditions, such as experimental autoimmune encephalomyelitis (EAE). Here we show that TCF-1 is a critical factor to repress IL-17 gene locus by chromatin modifications during T cell development. Deletion of TCF-1 resulted in increased IL-17 gene expression both in thymus and peripheral T cells, which led to enhanced Th17 differentiation. As a result, TCF-1-/- mice were susceptible to Th17-dependent EAE induction. Rag1-/- mice reconstituted with TCF-1-/- T cells were also susceptible to EAE, indicating TCF-1 is intrinsically required to repress IL-17. However, expression of wild-type TCF-1 or dominant negative TCF-1 did not interfere with Th17 differentiation in mature T cells. Furthermore, expression of TCF-1 in TCF-1-/- T cells could not restore Th17 differentiation to wild-type levels, indicating that TCF-1 cannot affect IL-17 production at the mature T cell stage. This is also supported by the normal up-regulation or activation in mature TCF-1-/- T cells of factors known to regulate Th17 differentiation, including RORγt and Stat3. We observed hyperacetylation together with trimethylation of Lys-4 at the IL-17 locus in TCF-1-/- thymocytes, two epigenetic modifications indicating an open active state of the gene. Such epigenetic modifications were preserved even when TCF-1-/- T cells migrated out of thymus. Therefore, TCF-1 mediates an active process to repress IL-17 gene expression via epigenetic modifications during T cell development. This TCF-1-mediated repression of IL-17 is critical for peripheral T cells to generate balanced immune responses

    NF-κB inhibition impairs the radioresponse of hypoxic EMT-6 tumour cells through downregulation of inducible nitric oxide synthase

    Get PDF
    Hypoxic EMT-6 tumour cells displayed a high level of inducible nitric oxide synthase (iNOS) and an increased radiosensitivity after a 16 h exposure to lipopolysaccharide, a known activator of nuclear factor-κB (NF-κB). Both iNOS activation and radioresponse were impaired by the NF-κB inhibitors phenylarsine oxide and lactacystin. Contrasting to other studies, our data show that inhibition of NF-κB may impair the radioresponse of tumour cells through downregulation of iNOS. © 2003 Cancer Research UK.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Efficient control of atmospheric sulfate production based on three formation regimes

    Get PDF
    The formation of sulfate (SO₄²⁻) in the atmosphere is linked chemically to its direct precursor, sulfur dioxide (SO₂), through several key oxidation paths for which nitrogen oxides or NO_x (NO and NO₂) play essential roles. Here we present a coherent description of the dependence of SO₄²⁻ formation on SO₂ and NO_x under haze-fog conditions, in which fog events are accompanied by high aerosol loadings and fog-water pH in the range of 4.7–6.9. Three SO₄²⁻ formation regimes emerge as defined by the role played by NO_x. In the low-NO_x regime, NO_x act as catalyst for HO_x, which is a major oxidant for SO₂, whereas in the high-NO_x regime, NO₂ is a sink for HO_x. Moreover, at highly elevated NO_x levels, a so-called NO₂-oxidant regime exists in which aqueous NO₂ serves as the dominant oxidant of SO₂. This regime also exists under clean fog conditions but is less prominent. Sensitivity calculations using an emission-driven box model show that the reduction of SO₄²⁻ is comparably sensitive to the reduction of SO₂ and NO_x emissions in the NO₂-oxidant regime, suggesting a co-reduction strategy. Formation of SO₄²⁻ is relatively insensitive to NO_x reduction in the low-NO_x regime, whereas reduction of NO_x actually leads to increased SO₄²⁻ production in the intermediate high-NO_x regime
    corecore