14 research outputs found

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Aberrant gene methylation in the peritoneal fluid is a risk factor predicting peritoneal recurrence in gastric cancer

    No full text
    AIM: To investigate whether gene methylation in the peritoneal fluid (PF) predicts peritoneal recurrence in gastric cancer patients

    A Case of Idiopathic Scoliosis with Intraoperative Neurophysiological Monitoring Abnormalities Leading to the Diagnosis of Charcot-Marie-Tooth Disease 1B

    No full text
    The current case report describes the clinical and genetic characteristics of a 16-year-old female proband. She did not have any subjective neurological symptoms preoperatively and who was incidentally diagnosed due to abnormal intraoperative neurophysiological monitoring (IONM) using transcranial electrical stimulation motor evoked potentials (TES-MEP) and somatosensory evoked potentials (SEP) for idiopathic scoliosis, leading to the diagnosis of Charcot-Marie-Tooth disease (CMT) 1B. There was no similar disease in her family history. Nerve conduction velocity testing revealed decreased conduction velocity of the median nerve, and genetic testing indicated myelin protein zero (MPZ) mutation (c242A > G), leading to the diagnosis of demyelinating type CMT1B. The parents had no genetic mutation, and this was a case of de novo mutation. CMT1B is an important differential diagnosis because, similar to our case, there may not be any clinical symptoms. The disease was discovered during a careful evaluation of the patient's scoliosis and other complications. TES-MEP was more useful than SEP for IONM of scoliosis with CMT1B

    Expression of Hypoxic Marker CA IX Is Regulated by Site-Specific DNA Methylation and Is Associated with the Histology of Gastric Cancer

    No full text
    The hypoxic marker carbonic anhydrase (CA) IX has been recognized as a tumor-associated protein and is essential for cancer development. However, because CA IX expression does not always correlate with hypoxia, its regulatory mechanism remains unclear. The objective of the present study was to clarify the role and regulation of CA IX expression in gastric cancer. The immunohistochemical expression of CA IX and hypoxia-inducible factor-1α was assessed in 77 patients with gastric cancer. A methylation-sensitive restriction enzyme method was used to quantify site-specific methylation at −74 bp in the CA9 promoter in tissue from patients with gastric cancer and in corresponding normal tissue. CA9 expression in cell lines was strongly dependent on methylation status but not hypoxic stimuli. In tissue from patients with gastric cancer, the quantity of methylation was significantly correlated with the protein expression (P = 0.003). Moreover, the methylation value was significantly lower in intestinal-type compared with diffuse-type cancer (P = 0.003). Compared with normal mucosa, intestinal-type cancer demonstrated significant hypomethylation, whereas diffuse-type cancer exhibited hypermethylation. In conclusion, expression of CA IX in gastric cancer is predominantly regulated by methylation of a single CpG rather than by hypoxia. Furthermore, epigenetic alterations in CA9 differ between the intestinal and diffuse types of gastric cancer
    corecore