42 research outputs found

    GC-MS analyses and chemometric processing to discriminate the local and long-distance sources of PAHs associated to atmospheric PM2.5

    Get PDF
    Purpose . This study presents a procedure to differentiate the local and remote sources of particulate-bound polycyclic aromatic hydrocarbons (PAHs). Methods. Data were collected during an extended PM2.5 sampling campaign (2009–2010) carried out for 1 year in Venice-Mestre, Italy, at three stations with different emissive scenarios: urban, industrial, and semirural background. Diagnostic ratios and factor analysis were initially applied to point out the most probable sources. In a second step, the areal distribution of the identified sources was studied by applying the discriminant analysis on factor scores. Third, samples collected in days with similar atmospheric circulation patterns were grouped using a cluster analysis on wind data. Local contributions to PM2.5 and PAHs were then assessed by interpreting cluster results with chemical data. Results. Results evidenced that significantly lower levels of PM2.5 and PAHs were found when faster winds changed air masses, whereas in presence of scarce ventilation, locally emitted pollutants were trapped and concentrations increased. This way, an estimation of pollutant loads due to local sources can be derived from data collected in days with similar wind patterns. Long-range contributions were detected by a cluster analysis on the air mass back-trajectories. Results revealed that PM2.5 concentrations were relatively high when air masses had passed over the Po Valley. However, external sources do not significantly contribute to the PAHs load. Conclusions. The proposed procedure can be applied to other environments with minor modifications, and the obtained information can be useful to design local and national air pollution control strategies

    Photo-tautomerization of acetaldehyde as a photochemical source of formic acid in the troposphere

    Get PDF
    Organic acids play a key role in the troposphere, contributing to atmospheric aqueous-phase chemistry, aerosol formation, and precipitation acidity. Atmospheric models currently account for less than half the observed, globally averaged formic acid loading. Here we report that acetaldehyde photo-tautomerizes to vinyl alcohol under atmospherically relevant pressures of nitrogen, in the actinic wavelength range, λ = 300–330 nm, with measured quantum yields of 2–25%. Recent theoretical kinetics studies show hydroxyl-initiated oxidation of vinyl alcohol produces formic acid. Adding these pathways to an atmospheric chemistry box model (Master Chemical Mechanism) demonstrates increased formic acid concentrations by a factor of ~1.7 in the polluted troposphere and a factor of ~3 under pristine conditions. Incorporating this mechanism into the GEOS-Chem 3D global chemical transport model reveals an estimated 7% contribution to worldwide formic acid production, with up to 60% of the total modeled formic acid production over oceans arising from photo-tautomerization

    Association between exhaled breath condensate nitrate + nitrite levels with ambient coarse particle exposure in subjects with airways disease

    No full text
    Item does not contain fulltextOBJECTIVES: Studies of individual inflammatory responses to exposure to air pollution are few but are important in defining the most sensitive markers in better understanding pathophysiological pathways in the lung. The goal of this study was to assess whether exposure to airborne particles is associated with oxidative stress in an epidemiological setting. METHODS: The authors assessed exposure to particulate matter air pollution in four European cities in relation to levels of nitrite plus nitrate (NOx) in exhaled breath condensate (EBC) measurements in 133 subjects with asthma or chronic obstructive pulmonary disease using an EBC capture method developed for field use. In each subject, three measurements were collected. Exposure measurements included particles smaller than 10 mum (PM(10)), smaller than 2.5 mum (PM(2.5)) and particle number counts at a central site, outdoors near the subject's home and indoors. RESULTS: There were positive and significant relationships between EBC NOx and coarse particles at the central sampling sites (increase of 20.4% (95% CI 6.1% to 36.6%) per 10 mug/m(3) increase of coarse particles of the previous day) but not between EBC NOx and other particle measures. Associations tended to be stronger in subjects not taking steroid medication. CONCLUSIONS: An association was found between exposure to ambient coarse particles at central sites and EBC NOx, a marker of oxidative stress. The lack of association between PM measures more indicative of personal exposures (particularly indoor exposure) means interpretation should be cautious. However, EBC NOx may prove to be a marker of PM-induced oxidative stress in epidemiological studies
    corecore