2,484 research outputs found

    Dynamic elastic properties and magnetic susceptibility across the austenite-martensite transformation in site-disordered ferromagnetic Ni-Fe-Al alloy

    Get PDF
    Besides permitting an accurate determination of the ferromagnetic-to-paramagnetic phase transition temperature and the characteristic temperatures for the beginning and end of the growth of martensite (austenite) phase at the expense of austenite (martensite) phase while cooling (heating), the results of an extensive ac susceptibility, sound velocity and internal friction investigation of the thermoelastic martensitic transformation in melt-quenched (site-disordered) Ni55Fe20Al25 alloy provide a clear experimental evidence for the following. Irreversible thermoelastic changes (thermal hysteresis) occur in the austenite phase in the premartensitic regime. In the heating cycle, the system retains the "memory" of the initiation and subsequent growth of the martensitic phase (at the expense of the parent austenite phase) that had taken place during the cooling cycle in the austenite-martensite phase coexistence region. We report and discuss these novel findings in this communication.Comment: 5 figure

    Two-dimensional frustrated spin systems in high magnetic fields

    Full text link
    We discuss our numerical results on the properties of the S = 1/2 frustrated J1-J2 Heisenberg model on a square lattice as a function of temperature and frustration angle phi = atan(J2/J1) in an applied magnetic field. We cover the full phase diagram of the model in the range -pi <= phi <= pi. The discussion includes the parameter dependence of the saturation field itself, and addresses the instabilities associated with it. We also discuss the magnetocaloric effect of the model and show how it can be used to uniquely determine the effective interaction constants of the compounds which were investigated experimentally.Comment: 4 pages, 5 figures, proceedings of RHMF 200

    Spin correlations and exchange in square lattice frustrated ferromagnets

    Full text link
    The J1-J2 model on a square lattice exhibits a rich variety of different forms of magnetic order that depend sensitively on the ratio of exchange constants J2/J1. We use bulk magnetometry and polarized neutron scattering to determine J1 and J2 unambiguously for two materials in a new family of vanadium phosphates, Pb2VO(PO4)2 and SrZnVO(PO4)2, and we find that they have ferromagnetic J1. The ordered moment in the collinear antiferromagnetic ground state is reduced, and the diffuse magnetic scattering is enhanced, as the predicted bond-nematic region of the phase diagram is approached.Comment: 4 pages, 4 figure

    Semi-Supervised Learning of Lift Optimization of Multi-Element Three-Segment Variable Camber Airfoil

    Get PDF
    This chapter describes a new intelligent platform for learning optimal designs of morphing wings based on Variable Camber Continuous Trailing Edge Flaps (VCCTEF) in conjunction with a leading edge flap called the Variable Camber Krueger (VCK). The new platform consists of a Computational Fluid Dynamics (CFD) methodology coupled with a semi-supervised learning methodology. The CFD component of the intelligent platform comprises of a full Navier-Stokes solution capability (NASA OVERFLOW solver with Spalart-Allmaras turbulence model) that computes flow over a tri-element inboard NASA Generic Transport Model (GTM) wing section. Various VCCTEF/VCK settings and configurations were considered to explore optimal design for high-lift flight during take-off and landing. To determine globally optimal design of such a system, an extremely large set of CFD simulations is needed. This is not feasible to achieve in practice. To alleviate this problem, a recourse was taken to a semi-supervised learning (SSL) methodology, which is based on manifold regularization techniques. A reasonable space of CFD solutions was populated and then the SSL methodology was used to fit this manifold in its entirety, including the gaps in the manifold where there were no CFD solutions available. The SSL methodology in conjunction with an elastodynamic solver (FiDDLE) was demonstrated in an earlier study involving structural health monitoring. These CFD-SSL methodologies define the new intelligent platform that forms the basis for our search for optimal design of wings. Although the present platform can be used in various other design and operational problems in engineering, this chapter focuses on the high-lift study of the VCK-VCCTEF system. Top few candidate design configurations were identified by solving the CFD problem in a small subset of the design space. The SSL component was trained on the design space, and was then used in a predictive mode to populate a selected set of test points outside of the given design space. The new design test space thus populated was evaluated by using the CFD component by determining the error between the SSL predictions and the true (CFD) solutions, which was found to be small. This demonstrates the proposed CFD-SSL methodologies for isolating the best design of the VCK-VCCTEF system, and it holds promise for quantitatively identifying best designs of flight systems, in general

    Finite-size effects in amorphous Fe90Zr10/Al75Zr25 multilayers

    Full text link
    The thickness dependence of the magnetic properties of amorphous Fe90Zr10 layers has been explored using Fe90Zr10/Al75Zr25 multilayers. The Al75Zr25 layer thickness is kept at 40 \AA, while the thickness of the Fe90Zr10 layers is varied between 5 and 20 \AA. The thickness of the Al75Zr25 layers is sufficiently large to suppress any significant interlayer coupling. Both the Curie temperature and the spontaneous magnetization decrease non-linearly with decreasing thickness of the Fe90Zr10 layers. No ferromagnetic order is observed in the multilayer with 5 {\AA} Fe90Zr10 layers. The variation of the Curie temperature TcT_c with the Fe90Zr10 layer thickness tt is fitted with a finite-size scaling formula [1-\Tc(t)/\Tc(\infty)]=[(t-t')/t_0]^{-\lambda}, yielding λ=1.2\lambda=1.2, and a critical thickness t′=6.5t'=6.5 \AA, below which the Curie temperature is zero.Comment: 8 pages, 8 figure

    Bose Metals and Insulators on Multi-Leg Ladders with Ring Exchange

    Get PDF
    We establish compelling evidence for the existence of new quasi-one-dimensional descendants of the d-wave Bose liquid (DBL), an exotic two-dimensional quantum phase of uncondensed itinerant bosons characterized by surfaces of gapless excitations in momentum space [O. I. Motrunich and M. P. A. Fisher, Phys. Rev. B {\bf 75}, 235116 (2007)]. In particular, motivated by a strong-coupling analysis of the gauge theory for the DBL, we study a model of hard-core bosons moving on the NN-leg square ladder with frustrating four-site ring exchange. Here, we focus on four- and three-leg systems where we have identified two novel phases: a compressible gapless Bose metal on the four-leg ladder and an incompressible gapless Mott insulator on the three-leg ladder. The former is conducting along the ladder and has five gapless modes, one more than the number of legs. This represents a significant step forward in establishing the potential stability of the DBL in two dimensions. The latter, on the other hand, is a fundamentally quasi-one-dimensional phase that is insulating along the ladder but has two gapless modes and incommensurate power law transverse density-density correlations. In both cases, we can understand the nature of the phase using slave-particle-inspired variational wave functions consisting of a product of two distinct Slater determinants, the properties of which compare impressively well to a density matrix renormalization group solution of the model Hamiltonian. Stability arguments are made in favor of both quantum phases by accessing the universal low-energy physics with a bosonization analysis of the appropriate quasi-1D gauge theory. We will briefly discuss the potential relevance of these findings to high-temperature superconductors, cold atomic gases, and frustrated quantum magnets.Comment: 33 pages, 16 figures; this is the print version, only very minor changes from v

    Glaucoma: role of neuroprotective agents

    Get PDF
    Glaucoma is an optic neuropathy, considered as the second leading cause of blindness worldwide. Glaucoma is characterized by selective death of retinal ganglion cells (RGC) and a progressive loss of vision. Elevated intraocular pressure (IOP) is one of the most important risk factors for developing glaucoma and hence we mainly focus on lowering IOP to arrest the progression of glaucoma. However, many patients continue to demonstrate a clinically downhill course despite the control of initially raised IOP. In fact, some patients develop what is called normal tension glaucoma, not associated to an increased IOP. This emphasizes that several pressure-independent mechanisms are responsible for the development and progression of glaucomatous neuropathy and that high IOP and vascular insufficiency in the optic nerve head are only risk factors for the development of glaucoma, and are not the only target for the treatment of glaucoma. The reason is that the process of RGC death is thought to be biphasic, and the primary injury is followed by a slower secondary degeneration related to a noxious environment surrounding the apoptotic cells. This environment is characterized by changes in the extra-cellular ionic concentrations, increased amounts of free radicals, neurotrophins (NT) depletion and increased glutamate-induced excitotoxicity due to high extra-cellular glutamate levels, which binds to N-methyl-D-aspartate (NMDA) receptors leading to an abnormally high intracellular Ca2+ concentration. Neuroprotection is a process that attempts to preserve the remaining cells that are still vulnerable to damage, and the main aim of neuroprotective therapy is to employ pharmacologic or other means to attenuate the hostility of the environment surrounding the degenerating cells, or to supply the cells with the tools to deal with this aggression, providing resilience to the insult. Several agents have been reported neuroprotective in glaucoma, both in clinical assays, such as Ca2+ channel blockers, and in experimental studies, such as betaxolol, brimonidine, NMDA antagonists, nitric oxide synthase inhibitors, NT and Ginkgo biloba extract. Most neuroprotective agents for glaucoma have proved beneficial effects over RGC, not showing effects over IOP. However, when analyzing classically used medications for glaucoma, it becomes difficult to understand if its effect over the progression of glaucoma is due to neuroprotective pathways or by means of lowering IOP. The ideal anti-glaucoma drug would be one that when applied topically, reduces IOP, but also probes to reach the retina in appropriate amounts, and activates specific receptors in the retina to attenuate RGC death. In this review, we will examine currently advocated neuroprotective drug-based strategies in the potential management of glaucoma

    A new alkylated benzoquinone from rhizomes of Iris kumaonensis

    Get PDF
    A novel alkylated unsaturated p-benzoquinone designated as 3-[(z)-120-heptadecenyl]- 2-hydroxy-5-methoxy-1,4-benzoquinone was isolated from hexane extract of the rhizomes of Iris kumaonensis and it’s structure was confirmed by extensive spectroscopic analysis, IR, MS, HREIMS, 1D, 2D NMR and comparison with the literature data of known compounds

    Spin wave dispersion based on the quasiparticle self-consistent GWGW method: NiO, MnO and α\alpha-MnAs

    Full text link
    We present spin wave dispersions in MnO, NiO, and α\alpha-MnAs based on the quasiparticle self-consistent GWGW method (\qsgw), which determines an optimum quasiparticle picture. For MnO and NiO, \qsgw results are in rather good agreement with experiments, in contrast to the LDA and LDA+U description. For α\alpha-MnAs, we find a collinear ferromagnetic ground state in \qsgw, while this phase is unstable in the LDA.Comment: V2: add another figure for SW life time. Formalism is detaile
    • …
    corecore