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This chapter describes a new intelligent platform for learning optimal designs of morphing wings based
on Variable Camber Continuous Trailing Edge Flaps (VCCTEF) in conjunction with a leading edge flap
called the Variable Camber Krueger (VCK). The new platform consists of a Computational Fluid Dynamics
(CFD) methodology coupled with a semi-supervised learning methodology. The CFD component of the
intelligent platform comprises of a full Navier-Stokes solution capability (NASA OVERFLOW solver with
Spalart-Allmaras turbulence model1) that computes flow over a tri-element inboard NASA Generic Transport
Model (GTM) wing section. Various VCCTEF/VCK settings and configurations were considered to explore
optimal design for high-lift flight during take-off and landing. To determine globally optimal design of such
a system, an extremely large set of CFD simulations is needed. This is not feasible to achieve in practice.
To alleviate this problem, a recourse was taken to a semi-supervised learning (SSL) methodology,2 which is
based on manifold regularization techniques.3 A reasonable space of CFD solutions was populated4 and then
the SSL methodology was used to fit this manifold in its entirety, including the gaps in the manifold where
there were no CFD solutions available.

The SSL methodology in conjunction with an elastodynamic solver (FiDDLE5) was demonstrated in
an earlier study involving structural health monitoring.6 These CFD-SSL methodologies define the new
intelligent platform that forms the basis for our search for optimal design of wings. Although the present
platform can be used in various other design and operational problems in engineering, this chapter focuses
on the high-lift study of the VCK-VCCTEF system.

Top few candidate design configurations were identified by solving the CFD problem in a small subset of
the design space. The SSL component was trained on the design space, and was then used in a predictive
mode to populate a selected set of test points outside of the given design space. The new design test space
thus populated was evaluated by using the CFD component by determining the error between the SSL
predictions and the true (CFD) solutions, which was found to be small. This demonstrates the proposed
CFD-SSL methodologies for isolating the best design of the VCK-VCCTEF system, and it holds promise for
quantitatively identifying best designs of flight systems, in general.

1 Introduction
The Advanced Air Transportation Technologies (AATT) project is conducting multidisciplinary foundational
research to investigate advanced concepts and technologies for future aircraft systems under the Advanced Air
Vehicle Program (AAVP) of the NASA Aeronautics Research Mission Directorate. A NASA study entitled
"Elastically Shaped Future Air Vehicle Concept" was conducted in 20107,8 to examine new concepts that can
enable active control of wing aeroelasticity to achieve drag reduction. This study showed that highly flexible
wing aerodynamic surfaces can be elastically shaped in-flight by active control of wing twist and vertical
deflection in order to optimize the local angle of attack of wing sections. Thus aerodynamic efficiency can be
improved through drag reduction during cruise and enhanced lift performance during take-off and landing.

∗ Computational Aerosciences Branch, NASA Advanced Supercomputing (NAS) Division;
Associate Fellow, AIAA
∗∗ Intelligent Systems Division; Associate Fellow, AIAA

1

https://ntrs.nasa.gov/search.jsp?R=20170011174 2019-08-31T01:31:19+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/141519374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The study shows that active aeroelastic wing shaping control can have a potential drag reduction benefit.
Conventional flap and slat devices inherently generate drag as they increase lift. The study shows that
in cruise, conventional flap and slat systems are not aerodynamically efficient for use in active aeroelastic
wing shaping control for drag reduction. A new flap concept, referred to as Variable Camber Continuous
Trailing Edge Flap (VCCTEF) system, was conceived by NASA to address this need.7 Initial study results
indicate that the VCCTEF system may offer a potential pay-off in drag reduction in cruise that could
provide significant fuel savings. Fig. 1 illustrates the VCCTEF deployed on the NASA generic transport
model (GTM).

NASA and Boeing are currently conducting further studies of the VCCTEF under the research element
Performance Adaptive Aeroelastic Wing (PAAW) within the AATT project.9,10 This study built upon the
development of the VCCTEF system (shown in Fig. 2) for the GTM11 employs light-weight shaped memory
alloy (SMA) technology for actuation and three separate chordwise flap segments shaped to provide a variable
camber to the flap. Introduction of this camber has potential for drag reduction as compared to a conventional
straight, plain flap. The flap is also made up of individual 2-foot spanwise sections, which enable different
flap settings at each flap spanwise position. This enables wing twist shape control as a function of span to
establish the best lift-to-drag ratio (L/D) at any aircraft gross weight or mission segment. Current wing twist
on commercial transports is permanently set for one cruise, which is usually a 50% fuel loading or mid-point
on the gross weight schedule. The VCCTEF offers different wing twist settings for each gross weight condition
and also different settings for climb, cruise and descent, which is a major factor in obtaining the best L/D
for all gross weight conditions and phases of flight. The second feature of VCCTEF is a continuous trailing
edge. The individual 2-foot spanwise flap sections are connected with a flexible covering, so no breaks can
occur in the flap platform, thus reducing excessive vorticity generation. This can reduce drag and airframe
noise. Variable camber when combined with the continuous trailing edge results in a further reduction in
drag.

The continuous trailing edge flap design combined with variable camber flap can result in lower drag. In
summary, it can also offer a potential noise reduction benefit due to distinct optimal settings for climb, cruise
and descent.12 In a previous paper,13 a computational study was conducted to explore the two-dimensional
viscous effects in cruise of a number of VCCTEF configurations on lift and drag of the GTM wing section
at the wing planform break. The NASA flow solver OVERFLOW was used to conduct this study. The
results identified the most aerodynamically efficient VCCTEF configuration among the initial candidates.
The study also showed that a three-segment variable camber flap is aerodynamically more efficient than
a single-element plain flap. A recent high-lift wind tunnel test conducted in July 2014 at University of
Washington Aeronautical Laboratory14,15 confirms this observation.

The present study builds on a recent RANS study4 that explored the high-lift design space for the tri-
element airfoil typical of a GTM wing section. The tri-element airfoil is comprised of VCK, main airfoil and
the VCCTEF. The design space consists of 224 configurations drawn from various combinations of of VCK
and VCCTEF settings, as described below. Limited experimental data15,16,17 are available corresponding to
four configurations (VCK65, VCK60, VCK55, VCK50 – vck1), out of the 224 considered here using CFD.
In the following paragraphs, details of the CFD results will be presented, followed by the details of the
semi-supervised learning methodology and results.

The database of solutions generated by CFD simulations is a subset of a very large manifold of possible
solutions, which would be impractical to generate using CFD. Therefore, a semi-supervised machine learning
methodology,2,3 which is based on three regularization terms, i.e., least squares, a Laplacian and a radial
basis function will be used to approximate this manifold of solutions, as shown below. This methodology
was demonstrated in the context of structural fault detection.6 This semi-supervised learning methodology
relies on its Laplacian component to smoothly approximate the manifold over gaps in the solution manifold
created by a finite number of CFD solutions sparsely populating the solution manifold and is guaranteed
to converge with the appropriate choice of kernel parameters.3 The regularization concept, in general, owes
its origin to Ref. 18, and it is widely used in learning techniques, unsupervised and fully supervised. This
chapter focuses on the use of the semi-supervised learning algorithm3, called the Laplacian Regularized Least
Squares algorithm.
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2 Methodology
The methodology proposed in the present work is multi-disciplinary in nature. The first component is based
on modeling and simulation of candidate configurations of the VCK-VCCTEF system under consideration
using CFD. The second component is based on learning the sparse database created in the first component
and then providing as large a database as desired through a semi-supervised learning process, within a small
error bound. The third component is the wind-tunnel validation of this large database at various desired test
points. The third component is not the subject of the present work. The first two components will provide
a host of design test points for the experimentalist to validate. The approach adopted here establishes a
viable design methodology that will converge onto optimal designs of the VCK-VCCTEF system in much
shorter time than would be possible otherwise. In fact, converging onto an optimal design would not be
practically feasible, without the semi-supervised learning component. We shall call the first component
RANS simulations and the second component Semi-supervised Learning, and they are described below.

2.1 RANS Simulations
The high-lift flow field was simulated for M = 0.25 and Re = 3.3196x107, where M represents the Mach num-
ber and Re the Reynolds number, based on the chord length. RANS simulations, based on the OVERFLOW
flow solver with the SA turbulence model, were carried out to generate steady state solutions. Numerous
combinations corresponding to 18 vck configurations for VCK setting (deflection angle) of 55o and 19 vck
configurations each for VCK settings of 60o and 65o with respect to the main wing, and 4 VCCTEF set-
tings with the Fowler slot for the inboard wing are considered in this study. These vck configurations along
with the 4 VCCTEF settings are represented in Table 1 below. Three VCK settings are considered, corre-
sponding to deflection angles of 55o, 60o and 65o. For each VCK setting, VCK55, VCK60 and VCK65, the
vck configurations in terms of x and y displacement offset with respect to one experimental configuration
(VCK65 + vck1) studied experimentally are shown in Fig. 3, Fig. 4 and Fig. 5, respectively. Nineteen vck
configurations are designated vck1, vck2, vck3, ... , vck18, vck19. Detailed computational results discussing
the lift characteristics will be shown below for all the 224 configurations to explore better design than the
four studied experimentally.

Fig. 6 shows the four VCCTEF settings, corresponding to 4 different flap deflection angles, as shown in
Table 2. Definition of various configurations are listed in Table 1. The four VCCTEF settings are denoted
by 10/10/10, 15/10/5, 20/5/5 and 30/0/0. These settings were selected based on a total deflection angle of
30o, a value which is typically used in landing and take-off configurations. The VCCTEF settings include a
circular arc, a parabolic arc and a straight deflected flap.

2.2 Semi-supervised Learning
The purpose of the learning methodology is to fill the gap in the space of a relatively small set of solutions
that can be reasonably obtained by CFD owing to large computational resources needed. Using the solution
space corresponding to 224 configurations populated by CFD, we fit a multi-dimensional "surface" over this
space and thus enable solutions at all intermediate configurations.

We do a random selection of a subset of these CFD solutions and strip off the Clmax values, where Cl

represents the lift coefficient, from this subset and call this subset unlabelled (u) data, in the parlance of
semi-supervised learning.3 We will refer to the rest as labelled (l) data. Similarly, we select the unlabelled
(u) and labelled data (l) for Cdmax, where Cd represents the drag coefficient. Following,15 we write an
expression for our objective function:

f∗ = min
f∈HK

1

l
Σl

i=1(yi − f(xi))
2 + γA||f ||2K +

γI
(u+ l)2

fTLf .....................(1)

where for a Mercer Kernel, K: X x X → R, ∃ a reproducing kernel Hilbert space (RKHS), HK of
functions X → R, with a norm ‖ ‖K , and where the first term, (yi − f(xi))

2 is a squared loss function
representing a least squares regularizer, the second term represents a radial basis function based regularizer
and the third term is a Laplacian based regularizer. The optimization problems are solved for different
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training sets that define the cost function (squared loss function shown in Eq. 1 above) and different choices
of the regularization parameters, γA and γI .

The Representer Theorem can be used to show that the minimization problem has solution in HK , and
it is given by an expansion of kernel functions over both the labeled (l) and the unlabeled (u) data:

f∗(x) = Σl+u
i=1α

∗
iK(x, xi)...............................(2)

Minimization process of the objective function shown above constitutes a Laplacian regularized least
squares algorithm.3 The labeled data are {(xi, yi)}li=1, and the unlabeled data are {(xj)}j=l+u

j=l+1 . By mini-
mizing the objective function given by Eq. (1) above, we arrive at our solution over all the points in the
domain of our interest with known error bounds, which is an advantage over other methods such as ar-
tificial neural networks (ANN). In addition, the convergence to this global minimum over the considered
training set is guaranteed.15 A convex differentiable objective function of the (l + u) dimensional variable,
α = [α1, ...αl+u]

T , is obtained by substituting Eq. (2) in Eq. (1) above, which gives us

α∗ = (JK + γAlI +
γI l

(u+ l)2
LK)

−1
Y.................(3)

where J is a diagonal matrix and K is the Gram matrix of size, (l+u) x (l+u). In J ; the first l diagonal
entries are 1 and the remaining are 0. Y is a vector of size, (l+u) and L is the graph Laplacian. For further
details, the reader is referred to Ref. 3.

Thus, the solution to the optimization problem is obtained via Eq. 2 and Eq. 3 above.

Table 1: Definition of vck-VCCTEF Configurations

vck Configuration 10/10/10 15/10/5 20/5/5 30/0/0
vck1 vck1+10/10/10 vck1+15/10/5 vck1+20/5/5 vck1+30/0/0
vck2 vck2+10/10/10 vck2+15/10/5 vck2+20/5/5 vck2+30/0/0
vck3 vck3+10/10/10 vck3+15/10/5 vck3+20/5/5 vck3+30/0/0
vck4 vck4+10/10/10 vck4+15/10/5 vck4+20/5/5 vck4+30/0/0
vck5 vck5+10/10/10 vck5+15/10/5 vck5+20/5/5 vck5+30/0/0
—– ————– ————— ————— —————-
—– ————– ————— ————— —————-
—– ————– ————— ————— —————-

vck19 vck19+10/10/10 vck19+15/10/5 vck19+20/5/5 vck19+30/0/0
vck configurations are represented in Fig. 4, Fig. 5 and Fig. 6

Table 2: Definition of VCCTEF Configurations

Configuration Notation Flap 1, deg Flap 2, deg Flap 3, deg
3-segment circular arc camber 10/10/10 10 10 10

3-segment semi-rigid arc camber 15/10/5 15 10 5
3-segment 20/5/5 20 5 5

1-segment rigid flap 30/0/0 30 — —
Flap deflection angles are relative to the upstream segments

3 Results
Results corresponding to CFD simulations will be discussed first, followed by the results obtained by the
learning methodology.
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3.1 CFD Results
The results of the CFD study of lift optimization were discussed in an earlier study4, where a detailed grid
sensitivity study was carried out. An optimal grid resolution was determined to be 436x106x3 for the VCK,
694x106x3 for the main wing and 471x106x3 for the VCCTEF. For further details, the reader is referred to
Ref. 4.

A total of 4x(19x2+18x1) = 224 cases (19 vck configurations for each of the two VCK settings, VCK65
and VCK60, 18 vck configurations for the VCK55 setting, all corresponding to 4 different VCCTEF settings)
are considered. A sweep of angle of attack ranging from from -5 deg to 20 deg is considered. There are
only 18 vck configurations in the case of VCK55, since the 19th configuration is unrealistic for this case, as
mentioned above.

Instead of showing the results for all the 224 cases individually, 3D bar graphs are shown in Fig. 7 and
Fig. 8 for the case of the VCCTEF 10/10/10 setting corresponding to Clmax and Cdmax, respectively. These
3D bar graphs give a consolidated view of Clmax and Cdmax for all the 56 configurations corresponding to
the 10/10/10 setting of VCCTEF. Similarly, 3D bar graphs for the case of VCCTEF 15/10/5 are shown in
Fig. 9 and Fig. 10, for the case of VCCTEF 20/5/5 in Fig. 11 and Fig. 12, and for the 30/0/0 case in Fig.
13 and Fig. 14, respectively. The 3D bar graphs lay out a picture that presents the CFD data that defines
a subset of the manifold of solutions which the learning methodology will approximate.

For a closer picture of the variation of Clmax and Cdmax, it will be necessary to show 2D bar graphs. We
will therefore show the 2D bar graphs for all the VCCTEF settings, in discussion of our results. A 2D bar
graph is first presented showing Clmax for the VCCTEF-10x10x10 setting in Fig. 15. Corresponding plot for
Cdmax is shown in Fig. 16. Fig. 15 gives an overall view of the lift performance of the VCCTEF-10x10x10
setting for all the vck configurations corresponding to VCK55 and VCK60 and VCK65, and Fig. 16 shows
corresponding results for Cdmax. Similarly, Fig. 17 and Fig. 18 show Clmax and Cdmax, respectively, for
the VCCTEF-15x10x5 setting. Fig. 19 and Fig. 20 show the corresponding results for the VCCTEF-20x5x5
setting, and Fig. 21 and Fig. 22 show the corresponding results for the VCCTEF-30x0x0 setting. Figs. 15
through 22 give an overall view of the Clmax and Cdmax results for all the cases considered. The details
of why these vck configurations yield distinctly different lift characteristics will be presented in a separate
study, where the corresponding flow fields will be studied in detail. The present work is focussed on the
design aspects of the problem.

Results for Cl vs α are shown for a subset of these 224 cases. For this purpose, cases giving the 4 largest
values of Clmax are selected from Fig. 15 through Fig. 22. It turns out that for the VCK55 setting, vck
configurations of 2, 4, 14 and 15 give the largest Clmax for all the four VCCTEF settings of 10x10x10,
15x10x5, 20x5x5 and 30x0x0, and for VCK60 and VCK65 settings, vck configurations of 2, 7, 15 and 19 give
the largest Clmax for all the four VCCTEF settings. Therefore, in the discussion of results below, only these
vck configurations will be considered.

The determination of Clmax and Cdmax is made by inspecting the lift curve and drag polar results. For
example, for the VCK65 setting, Clmax and Cdmax as shown in Fig. 23(a) and Fig. 23(b), respectively.
Representative Clmax and Cdmax are shown in Fig. 24, Fig. 25 and Fig. 26, for the VCK55, VCK60 and
VCK65 settings, respectively, and the case of VCCTEF-20x5x5 setting. From Fig. 23(a) and Fig. 23(b),
it is shown that a constant lift curve slope exists only beyond α = 0, which shows that at lower angles of
attack, the lift curve for the tri-element VCK-wing-VCCTEF system does not follow linear theory. This is
shown by a nonlinear lift curve in the α range below 0 deg.

Fig. 24(a,b) shows the Cl vs α and drag polar results, respectively, for the VCK55 and VCCTEF-20x5x5
settings corresponding to vck2, vck4, vck14 and vck15 configurations. The vck15 case outperforms the other
three, based on maximum Cl. As mentioned above, in high-lift flight configuration, we want to minimize the
stall speed, which can be accomplished by maximizing Cl. The vck15 case also performs the best for the
other three VCCTEF settings, 15x10x5, 20x5x5 and 30x0x0 for the VCK55 setting, not shown here. .

The situation is different for the VCK60 setting, where the best lift performance (Clmax is demonstrated
by the vck2 case for all the VCCTEF settings. For example, for the VCCTEF-20x5x5 setting, highest Clmax

corresponds to the vck2 configuration, as shown in Fig. 25. This also holds true for the other three VCCTEF
settings. For the VCK65 setting, best lift performance is demonstrated again by the vck15 configuration for
all the VCCTEF settings. For example, this result is shown for the VCCTEF-20x5x5 setting in Fig. 26.
The overall result for the VCK60 setting is shown in Fig. 25(a), where vck2 and vck15 configurations yield
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the best and the next best high lift performance. For the VCK65 setting, the overall result is shown in Fig.
26(a), where vck15 and vck2 configurations yield the best and the next best high lift performance.

It is shown that vck15 and vck2 configurations are the top two candidates, in terms of overall high
lift performance, out of all the three VCK settings (VCK55, VCK60 and VCK65) for the VCCTEF-20x5x5
setting. Fig. 27(a) further shows that the VCCTEF-30x0x0 setting gives the highest lift performance (Cl−α)
corresponding to vck15 and vck2 configurations out of all the 4 VCCTEF settings.

3.2 Semi-supervised Learning Results
The CFD solutions for Clmax and Cdmax for the 224 VCK-VCCTEF configurations are shown in Fig. 7
through Fig. 27. The semi-supervised learning is based on these 224 configurations. We now pick a
small subset of test configurations outside of these 224 configurations for testing the learning methodology.
These test configurations are shown in Fig. 28(a,b,c) for the case of VCK55, VCK60 and VCK65 settings,
respectively. The learning algorithm will be tested on these nine configurations for the three VCK settings
corresponding to the VCCTEF-30/0/0 setting. The test metrics quantifying the accuracy of the learning
methodology are chosen to be root-mean-square (rms) error, rms error normalized by standard deviation
and rms error normalized by maximum deviation. This will be discussed below.

First, we will report the results corresponding to fully supervised learning, i.e., the complete manifold
has no unlabelled points. Fig. 29(a,b,c) shows the results for Clmax corresponding to VCK55, VCK60 and
VCK65 settings, respectively. The predictions approximate the CFD solutions (true solutions) within the
rms error bound of about 5%. This is a good approximation, given that the training space is populated
with just 224 solutions. For our purpose here, it is sufficient to use this limited training set, since our
predictions will be used to define a new design space to be eventually validated by wind-tunnel experiments.
In Fig. 29(a), for the case of VCK55, the largest discrepancy is approximately 7%, which is still close to the
statistical error margin of 5%. Knowing the nature of the data from CFD computations, a test set could be
chosen selectively to reduce this error further. But, in general, especially for a large database, a deterministic
selection of a test set may not be feasible. So, a test set is chosen here deliberately to stress-test the learning
algorithm.

Fig. 30(a,b,c) shows the corresponding Clmax results for semi-supervised learning, with unlabelled space
being a small subset (10%, chosen randomly) of the 224 solutions. On comparison of Figs. 29 and 30, it is
shown that for VCK55 and VCK60 settings, the semi-supervised learning appears to give better predictions
than the fully supervised learning. In fact, this difference in predictions corresponding to the fully supervised
and semi-supervised learning falls within the statistical error margin and is influenced by the choice of
random selection of the unlabeled data. For VCK65 setting, the comparison between fully supervised and
semi-supervised learning shows a similar prediction accuracy. Overall, the semi-supervised learning yields
predictions as well as the fully supervised learning, allowing for the statistical error margin of 5%, as stated
above. This is in keeping with the expectation that the Laplacian component of the learning algorithm
approximate the manifold over the unlabelled points as well as the fully supervised algorithm.

Similar behavior of the learning model is shown for Cdmax through Fig. 31(a,b,c) and Fig. 32(a,b,c).
Fig. 31(a,b,c) shows results corresponding to the fully supervised learning, and Fig. 32(a,b,c) corresponding
to the semi-supervised learning. Again, the rms error between the predictions and the true solution is within
5%.

Semi-supervised learning was also used with the unlabelled space as 20% of the 224 solutions. The
predictions were slightly degraded as compared with the 10% unlabelled space. This comparison for Clmax

is shown in Table 3, where three different measures of error are compared corresponding to fully supervised
and semi-supervised learning: root mean square (rms), rms error normalized by the standard deviation
and rms error normalized by the difference in maximum and minimum of Clmax. Differences in results
with fully supervised and semi-supervised learning are within a 5% spread. Even though the VCK55 and
VCK60 predictions appear to be slightly better for the semi-supervised case, this difference is not statistically
significant. It should be mentioned here that the unlabeled data set is chosen randomly. Corresponding
results for Cdmax are shown in Table 4. Again, the errors are statistically similar.

Finally, Table 5 shows a comparison of the execution time among the CFD, fully supervised and semi-
supervised solution methodologies. Whereas, each CFD solution takes about 310 sec on a 480 processor
Pleiades supercomputer in the NAS facility, fully supervised and semi-supervised learning methodologies
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take less than 1 sec on a MacBook Pro laptop.

Table 3: Different Error Measures for Cl

Algorithm rms rms/std rms/(max(Clmax)−min(Clmax))

Fully Supervised 0.0461 1.2241 0.4332
Semi-supervised (U=10%) 0.0477 1.2665 0.4482
Semi-supervised (U=20%) 0.0637 1.6918 0.5988

Table 4: Different Error Measures for Cd

Algorithm rms rms/std rms/(max(Clmax)−min(Clmax))

Fully Supervised 0.0314 0.1263 0.0468
Semi-supervised (U=10%) 0.0282 0.1137 0.0421
Semi-supervised (U=20%) 0.0358 0.1443 0.0534

Table 5: Comparison of Execution Time

CFD Fully Supervised Learning Semi-supervised Learning
310 sec 0.8 sec 0.9 sec

4 Summary
In this chapter, a detailed CFD high-lift study of the VCK-VCCTEF system has been carried out to study the
viscous effects in take-off and landing to explore the best VCK-VCCTEF system designs. For this purpose,
a three-segment variable camber airfoil employed as a performance adaptive aeroelastic wing shaping control
effector for a NASA Generic Transport Model (GTM) in landing and take-off configurations was considered.
The objective of the study was to define optimal high-lift VCCTEF settings and VCK settings/configurations.
A total of 224 combinations of VCK settings/configurations and VCCTEF settings were considered for the
inboard GTM wing, where the VCCTEFs are configured as a Fowler flap that forms a slot between the
VCCTEF and the inboard section of the main wing. For the VCK settings of deflection angles of 55o, 60o
and 65o, 18, 19 and 19 vck configurations, respectively, were considered for each of the 4 different VCCTEF
deflection settings. Different VCK configurations were defined by varying the horizontal and vertical distance
of the vck from the main wing. We have identified two topmost vck configurations corresponding to each of
the three VCK settings, out of the 224 configurations considered. For all the VCK settings, vck2 and vck15
give the best lift performance, regardless of the four VCCTEF settings used. In particular, the VCCTEF-
30x0x0 setting gave the highest overall lift performance with the vck2 and vck15 configurations. Thus, the
best configurations for the GTM airfoil have been identified out of all the 224 cases studied. This provides a
useful guide for the wind-tunnel experiment to verify the best design GTM configurations. Some of these best
high-lift configurations offer a counter-intuitive design that would not have been considered experimentally
a priori.

Since only a small subset of a very large set of possible configurations was considered using CFD, due to
a prohibitive computational expense and time limitations, the semi-supervised learning (SSL) methodology
was adopted as a supplementary tool to circumvent these problems. Using the SSL methodology, high lift
study of 9 additional configurations of the VCK-VCCTEF system was carried out. The predicted Clmax and
Cdmax results obtained with the SSL methodology were shown to be close to the true (CFD) solutions, within
the rms error bound of 5%. This demonstrates the feasibilty of the semi-supervised learning as a design tool
for identifying the best performing candidate VCK-VCCTEF configurations very rapidly, in conjunction
with CFD simulations and wind-tunnel experiments. It should be noted here that the size of the unlabelled
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data was picked to be 10% by also selecting another number, 20%, which underperformed the number, 10%.
This number tends to have an inverse relation to the degree of sparsity of CFD database.

Thus, the SSL methodology for the design problem at hand is well established to rapidly populate an
arbitrarily large design space and predict Clmax and Cdmax corresponding to the new test points. This
reinforces the overall CFD-SSL design methodology adopted here and provides a viable tool for design
problems in the wing design. It is encouraging to note that the SSL methodology used here is independent of
a particular design system. In fact, it can be extended to solve a variety of design problems in engineering.
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7 Figures

Figure 1: VCCTEF deployed on the generic transport model (GTM).

Figure 2: NASA/Boeing VCCTEF Configuration.
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Figure 3: VCK55: Various vck configurations.
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Figure 4: VCK60: Various vck configurations.
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Figure 5: VCK65: Various vck configurations.
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Figure 7: 3D bar graph showing Clmax for VCCTEF 10x10x10 setting
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Figure 8: 3D bar graph showing Cdmax for VCCTEF 10x10x10 setting
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Figure 9: 3D bar graph showing Clmax for VCCTEF 15x10x5 setting
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Figure 10: 3D bar graph showing Cdmax for VCCTEF 15x10x5 setting
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Figure 11: 3D bar graph showing Clmax for VCCTEF 20x5x5 setting
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Figure 12: 3D bar graph showing Cdmax for VCCTEF 20x5x5 setting
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Figure 13: 3D bar graph showing Clmax for VCCTEF 30x0x0 setting
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Figure 14: 3D bar graph showing Cdmax for VCCTEF 30x0x0 setting
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Figure 15: Bar graph showing Clmax for VCCTEF-10x10x10 setting
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Figure 16: Bar graph showing Cdmax for VCCTEF-10x10x10 setting
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Figure 17: Bar graph showing Clmax for VCCTEF-15x10x5 setting
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Figure 18: Bar graph showing Cdmax for VCCTEF-15x10x5 setting
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Figure 19: Bar graph showing Clmax for VCCTEF-20x5x5 setting
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Figure 20: Bar graph showing Cdmax for VCCTEF-20x5x5 setting
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Figure 21: Bar graph showing Clmax for VCCTEF-30x0x0 setting
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Figure 22: Bar graph showing Cdmax for VCCTEF-30x0x0 setting
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Figure 23: VCK65 results for the vck1 configuration and VCCTEF-30x0x0 setting
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Figure 24: VCK55 results for the VCCTEF-20x5x5 setting
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Figure 25: VCK60 results for the VCCTEF-20x5x5 setting
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Figure 26: VCK65 results for the VCCTEF-20x5x5 setting
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Figure 27: VCK65 results for the VCCTEF-30x0x0 setting
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Figure 28: VCK55/VCK60/VCK65: Test vck configurations for Learning Algorithm.
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Figure 29: Fully Supervised Algorithm: Predicted versus True Clmax.
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Figure 30: Semi-supervised Algorithm: Predicted versus True Clmax.
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Figure 31: Fully Supervised Algorithm: Predicted versus True Cdmax.
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Figure 32: Semi-supervised Algorithm: Predicted versus True Cdmax.
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