11,163 research outputs found

    Association of mid-infrared solar plages with Calcium K line emissions and magnetic structures

    Full text link
    Solar mid-IR observations in the 8-15 micrometer band continuum with moderate angular resolution (18 arcseconds) reveal the presence of bright structures surrounding sunspots. These plage-like features present good association with calcium CaII K1v plages and active region magnetograms. We describe a new optical setup with reflecting mirrors to produce solar images on the focal plane array of uncooled bolometers of a commercial camera preceded by germanium optics. First observations of a sunspot on September 11, 2006 show a mid-IR continuum plage exhibiting spatial distribution closely associated with CaII K1v line plage and magnetogram structures. The mid-IR continuum bright plage is about 140 K hotter than the neighboring photospheric regions, consistent with hot plasma confined by the magnetic spatial structures in and above the active regionComment: 5 pages, 4 figures. Accepted by PAS

    Observations of OJ 287 from the Geodetic VLBI Archive of the Washington Correlator

    Get PDF
    We present 27 geodetic VLBI maps of OJ 287 obtained from the archive of the Washington correlator. The observations presented here were made between 1990 October and 1996 December. During this period a sequence of six superluminal components has been identified. We measured the proper motion of these components to be approximately 0.5 mas/yr, which is about twice as high as that seen in previous VLBI observations. These results imply a higher component ejection rate than previously observed, in good agreement with the observed occurrences of radio outbursts. We have examined a possible connection between VLBI components and optical flares in the framework of a binary black hole system.Comment: 9 pages, 5 included figures, emulateapj.sty, accepted to The Astrophysical Journa

    Short-lived solar burst spectral component at f approximately 100 GHz

    Get PDF
    A new kind of burst emission component was discovered, exhibiting fast and distinct pulses (approx. 60 ms durations), with spectral peak emission at f approx. 100 GHz, and onset time coincident to hard X-rays to within approx. 128 ms. These features pose serious constraints for the interpretation using current models. One suggestion assumes the f approx. 100 GHz pulses emission by synchrotron mechanism of electrons accelerated to ultrarelativistic energies. The hard X-rays originate from inverse Compton scattering of the electrons on the synchrotron photons. Several crucial observational tests are needed for the understanding of the phenomenon, requiring high sensitivity and high time resolution (approx. 1 ms) simultaneous to high spatial resolution (0.1 arcsec) at f approx. 110 GHz and hard X-rays

    Enhanced Anandamide Plasma Levels in Patients with Complex Regional Pain Syndrome following Traumatic Injury: A Preliminary Report

    Get PDF
    The complex regional pain syndrome (CRPS) is a disabling neuropathic pain condition that may develop following injuries of the extremities. The pathogenesis of this syndrome is not clear; however, it includes complex interactions between the nervous and the immune system resulting in chronic inflammation, pain and trophic changes. This interaction may be mediated by chronic stress which is thought to activate the endogenous cannabinoid (endocannabinoid) system (ECS). We conducted an open, prospective, comparative clinical study to determine plasma level of the endocannabinoid anandamide by high-performance liquid chromatography and a tandem mass spectrometry system in 10 patients with CRPS type I versus 10 age- and sex-matched healthy controls. As compared to healthy controls, CRPS patients showed significantly higher plasma concentrations of anandamide. These results indicate that the peripheral ECS is activated in CRPS. Further studies are warranted to evaluate the role of the ECS in the limitation of inflammation and pain. Copyright (C) 2009 S. Karger AG, Base

    The possible importance of synchrotron/inverse Compton losses to explain fast mm-wave and hard X-ray emission of a solar event

    Get PDF
    The solar burst of 21 May 1984, presented a number of unique features. The time profile consisted of seven major structures (seconds), with a turnover frequency of greater than or approximately 90 GHz, well correlated in time to hard X-ray emission. Each structure consisted of multiple fast pulses (0.1 seconds), which were analyzed in detail. A proportionality between the repetition rate of the pulses and the burst fluxes at 90 GHz and greater than or approximately 100 keV hard X-rays, and an inverse proportionality between repetition rates and hard X-ray power law indices were found. A synchrotron/inverse Compton model was applied to explain the emission of the fast burst structures, which appear to be possible for the first three or four structures

    Comparison of averages of flows and maps

    Get PDF
    It is shown that in transient chaos there is no direct relation between averages in a continuos time dynamical system (flow) and averages using the analogous discrete system defined by the corresponding Poincare map. In contrast to permanent chaos, results obtained from the Poincare map can even be qualitatively incorrect. The reason is that the return time between intersections on the Poincare surface becomes relevant. However, after introducing a true-time Poincare map, quantities known from the usual Poincare map, such as conditionally invariant measure and natural measure, can be generalized to this case. Escape rates and averages, e.g. Liapunov exponents and drifts can be determined correctly using these novel measures. Significant differences become evident when we compare with results obtained from the usual Poincare map.Comment: 4 pages in Revtex with 2 included postscript figures, submitted to Phys. Rev.
    • …
    corecore