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Comparison of averages of flows and maps
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It is shown that in transient chaos there is no direct relation between averages in a continuous time dynami-
cal system(flow) and averages using the analogous discrete system defined by the corresponding Poincare
map. In contrast to permanent chaos, results obtained from the Poimearean even be qualitatively incor-
rect. The reason is that the return time between intersections on the Poswréaee becomes relevant.
However, after introducing a true-time Poincanep, quantities known from the usual Poincarap, such as
conditionally invariant measure and natural measure, can be generalized to this case. Escape rates and aver-
ages, e.g., Liapunov exponents and drifts, can be determined correctly using these measures. Significant
differences become evident when we compare with results obtained from the usual Poiapare

DOI: 10.1103/PhysReVvE.64.055206 PACS nunier05.45—-a, 05.70.Fh

Extensive investigations of chaotic systems in recenBased on this connection, averages of the megingn for
years have demonstrated the great importance of transietime) and the flow(using the real tim&) would be simply
chaos, due mainly to its connection with transport phenomrelated by a time scale. This is explicitly shown for general
enal1-3] and chaotic advectio], possibly associated with averages in case of permanénontransientchaos|7].
chemical reaction$5]. In most chaotic systems for certain ~ We demonstrate in this paper that, in contraspéoma-
purposes, it is sufficient to know the intersection points ofnentchaos, the situation is quite different fmansientchaos.
the trajectories with a chosen surfaegethe so-called Poin- Not only should({7) in Eq. (3) be changed, but averages of
caresurface. In the case ®-dimensional phase spadejs  the map and the flowor of the TPM representing)iare not
N—1 dimensional. Using a coordinate system Bnand anymore related by a time scale. The situation is somewhat
finding the connection between the successive intersectiomeminiscent of the case when, instead of simple averages, the
X, andx, ;, the Poincaranap (PM) can be constructed as decay rates of correlations are considered. Even in perma-

nent chaos, these show a discrepancy in nonideal situations

Xni1="F(Xp,). (1)  [8]. To proceed in a correct manner, we must start with the

TPM, which contains all the information needed for the
The behavior of the system can then be studied by iteratiofPnd-time behavior of the system and from which we can
of this map. The advantages of the use of PM @yt is  derive all necessary formulas. Finally, we compare these
discretegii) it has smaller dimension. Its disadvantage is theWith the corresponding ones of the PM by settim(x)
absence of the close connection between the number of ir= (7). The use of the PM is sufficient if the results do not
tersections) and the timet, since the return time between ~ change. _ . _ _ _ _
two intersections depends generically on where a trajectory [tiS convenient to initiate the trajectories by inserting par-
intersects. One can keep this information by completing théicles onP with an input current density;n(x,t). Since a

PM with the equation trajectory leavingP has either been initiated there or has
intersectedP previously, we obtain for the normal compo-
t ey =to+ 7(X,). ) nentpp(x,t) of the current density oR:
pp=(Lpp) + pin. 4

We call this extended map th&ue-time Poincare map

(TPM). ) Here L is the Frobenius-Perron operator of the TPM, which
Usually, one reduces to the PM by the following argu-is defined by

ment: The total time aftem iterations is given by the sum of

the corresponding return time$x). It is generally assumed

that for largen and for typical trajectories, the terms in the (Eg)(X,t)=f dx’ s(x—f(x"))gx",t=7(x")). (5

sum can be replaced by their average over the invariant den- P

ity pp of the map. The sum then becomes a prod6gt We shall consider such;, that equals zero fot<0 and

either vanishes after a certain positive time, or decays so fast
t=n(r), <T>:f dX pp(X) 7(X). (3)  thatit can be neglected for long times.

P Quite often the motion in one direction—the unstable
one—depends at most weakly on the others. Choosing a co-
ordinate system in whick is taken along this direction evo-
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f~1.) This happens, for example, in strongly dissipative sysEach value ofs for which \,(s)=1 with somem gives a
tems and in those analogous to Baker-type maps. In suchgole in the integrand and a terei' in pp(t). Therefore, the
situation, Eq(4) remains valid ifx is replaced by andf by  leading asymptotic time dependenceeis*, and hence the
f, and projecting the densities onto the unstable direction. Fogscape ratec is determined by the position of the leading
simplicity, we restrict our attention to this one-dimensionalpole, i.e.,
case.

First we compute the quasistationary distribution. We as- K= ~So, So=maxs with A,(s)=1 ands rea}, (10)
sume that the system will become quasistationary after some m
time, i.e., that the distribution decays exponentially but all
relative weights remain constant. Normalization of the distri-
bution leads to the time-independent conditionally invarian
density [9-11] pJx). We make the ansatzop(X,t)

where we assume for simplicity thais maximal form=0.

(s must be real, otherwispp(t) could not remain positive

for all t.) Equation(9) together with Eq(10) corresponds to
et / ! Eqg. (6), however, here we have obtained the result and the

=p(X)e” ", wherek is the escape rate, and obtain from Eq.

deca
(4) the self-consistent equation for the conditionally invariant y
density pp(X,t)=[1/=Ng(—r)]e Mageo(x,— k) (11)

B , Ny ar(x) , for large times without prescription @& .
pe(X)= ldx Sx—f(x"))e pe(X"). 6) Now we consider long time averages, under which we
mean the following. We take a quantity, which may be a
Herel is the range of the values af Clearly the solution of physical observable, that for each trajectory needs a summa-

this equation forx and p. generically depends om(x), tion of termsA(x,) taken at every intersectiox = f'(Xo),I

thereby they are different from the corresponding ones of thg 01 - - - N—1 of the trajectory Witer within a time dura-

PM. tion t. Then we average the suB{_;A(x;) over the trajec-
For example, lef be the tent map with a possible open- tories staying- ir! the system unt-il at least timpeand finally
ing: f(x)=x/a, if x<ag, f(X)=(1—-X)/a, if x>1—a;, We take the limitt—o. We consider some examples: If we

whereay+a;<1. Furthermore, let(x) be piecewise con- are interested in the average number of intersectioper
stant: 7(x) = 7o if X<ag, 7(X)= 7 if x>1—a,. Escape oc- time, we sefA(x)=1.To get the.le_adlng I__|a_pgno_v exponent
curs forag+a; <1, when the trajectory leaves the Poincaredescribing the exponential deviation of infinitesimally close
surface in the intervak e (ag,1—a;). The smooth, non- trajectories we need the logarithm of the derivative %),
negative solution of Eq(6) is now p(x)=1. By chance 1-- We must seA(x)=In[f’(x).

p(x) does not depend om(x), but the equation fok de- First we outline the case of the ordinary PM. The average

pends on it essentially: of S'"JA(x;) is obtained by taking into account the contri-
bution of all trajectories present aftariterations. They can

age 0+ae =1, (7)  be selected by a factdidx 5(f"(xo) —x). After this we di-

vide by the weight of these still present trajectories and ar-

and in nonlinear mapp(x) also depends on it. rive at

For a general treatment we write the formal solution of n-1
Eq.(4) as < 2 A(x,)> = jdxofdx5(xn—x)
I=0 | |
pr(x,D=[(1= L) *ppl(x.1). ®) -

We continue with Laplace transformations in time, since the x 20 A(X')p‘“(XO)/J'ldXPP(X’n)'

generalized operator can be written a&gf(t)=fHdt’ L(t

—t')g(t'), with L(AYg(x,t")=fdx’ 8(F(x')=x)8((x') 12

—At)g(x’,t"). Its Laplace transfornidenoted by ) is £g ~ The denominator is an integral of the densjpg(x,n)

=19 and Eq.(4) yieldspp=(1—T) 1p;,. Consideringsas =/ d%y 8(x,—X)pin(Xo) Over x. Correspondingly, we can

a parameter, we can use the eigenfunctions satisfying write the numerator as an integral of a “weight density of
A", aa(x,n)=[1d% 8= X) ZZgAX) pin(Xe).  As s

T B , e sr(x') - known [19], in the limit of infinite time the time average

(S)‘Pm(s)zﬁdx S(x—f(x"))e ¢m(S)=Am(S)em(S)  can be replaced by space average, arf@).

9 =lim_ LSMIAX))=Sdupy(X) A(X). Here the natural

r‘1~>ooﬁ
- - . measure[13] upy of the PM is defined for a sel as
to expandpiy as pin(S)=Zoam(S)¢m(s). Inverse Laplace oy (H)=lim_ [y audxpp(X)/fy dXpp(x), and U,
transformation gives =f7"(l) is a series of sets approaching the repeltbe
ot repelling invariant setfor n—ce.
e

1 ct+im * . . . N
X,t)= _J' ds> —— —a (s)o(X,S). The TPM requires two modificationgi) instead ofn we
pe(X.1) 27 Je—iw Eo: 1-Am(s) () em(X.9) take a time interval of length (ii) an additional sum over

n—oo
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the number of intersectionsis necessary, sinaeis generi-  ss 35
cally different for different trajectories. This yields for the 3 3

25
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oo
aA(x,t)=20 Jldxofdto 8(Xp—X)
n=
0
n-1 )n—l 0 02 04 06 08 4 1 0 02 04 06 08 4 1

X 5(t—to—j20 (X))

weight density ofA

|Zo AX)pin(Xo,to), (13 FIG. 1. Fractal distributiong.(Ax)/Ax of the natural measures
on a finite gridAx when modelingf(x) by the open tent mapag

Whereé(t—to—EJn;Olr(xj)) demands that the trajectories in- fa1=0._475,). Left: normal Poincarenap (scalen). Right: true-

tersectn times during timet—t,. The average value of tme Poincaremap(scalet), 7o=1, 7,=0.1.

2 ,A(x))/t is given asymptotically as

1
1 M((X.X+dX)):mlﬂo(X,—K)ﬁDo(X,—K)dX- (19
(A= IimT fdx«rA(x,t)> depp(x,t) . (19
e [ | .
‘ A comparison between the natural measure of the PM and
We shall see that this average does not depeng,an the TPM for the tent magFig. 1) shows obvious differences.

It is clear that the natural measure of the PM and TPM differ

To computeo, we note first that 2 e ) :
significantly, although their dimensidD is the same.

op=L(opa+App). (15) The Liapunov exponent can be written as
This is analogous to Ed8). Defining7=(1— £) ! we ob- '
i gous to Ed8). Defining 7= (1.~ £) Mo~ [ dmpnlf 00, @0
oa=TLATpin - (16) For A(x)=1 we findn(t)=t(1)..=t/(7), thereby
We introduceT by (Tg)(t):f})dt’ T(t—t")g(t"), similarly t=<T>F 21)

to the connection off and L. We can write the Laplace
transform of Eq.(16) in terms of the adjoint&* of L and  for large times, which is analogous to Eg0).
T* of T. For the backward transformation of this expression, ~The leading Liapunov exponent for the repelling tent map

we need the eigenfunctions &ff. The solutionsy(s) of 'S
L™ (S) ¥m(S) = N1 (S) ¥m(S) are functional§12—14 (and can 1 agexpkrIn(agt)+a; exprrin(a; )
be approximated with strongly oscillating functiondue to A jzp=
the fractal nature of the invariant set. We insert an expansion
1=Z2gbmim and observe that, for largethe most important |, this example we see the irrelevance ofor k=0 (no
terms occur when poles induced By * (s) and T(s) coin-  transient chags so that(7) only sets the time scale. On the
cide. Thus we obtain for large other hand, for>0 A, is not invariant to changes of,
) . relative tor,, proving again that is a relevant quantity in
agbote™ ” transient chaos.
fldxaA(X't): mﬁdx%(x,— K)AX) @o(X, ~ ). The comparison of the behavior of the flow and the map
0 (17) shows that the occurrence of criticality can change when
turning from the map to the real system. A state of a system
[Note that bothy,(— «) and ¢o( — ) are real] The prefac- is called critical if the natural measure is concentrated on a
tor of Eq. (17) can be expressed by settidgx) = r(x) be-  subset of the repeller, while the invariant measure is distrib-
cause for large timegr)..=1 according to Eq(14). Asymp-  uted on the whole repeller. In such situations there are two
totically we obtain conditionally invariant measures with different escape rates
[15,16,19. Here we use the piecewise parabolic 1D riHg)
1 that is defined on the interv@D,1] by its inverse branches
<A>w—mf,dx Yo% = k) @oX, —)AX), (18 71— (x+d-x(1-x))/2R (lower branch, f, (x)=1
- ffl(x) (upper branchand choose(x) =1+ 7,- (x—1/2).
where( )= [dX ¢o(X, — k) po(X, — k) 7(X) with the normal-  When increasing, at a certain value the escape rates change
ization [ dx ¢o(X,— k) po(X,— k)=1. In analogy with the order. This is evidently a breakpoint in Fig. 2, which shows
case of the PM, discussed below EG2), we define the the leading(smalle) one of the escape rates. Above that
natural measure of the TPM by demandin@A).. point criticality disappears. This will be explored in more
= [du(x) A(x). Since Eq(18) is valid for every observable detail elsewhere.
A, we see by inspection that the natural measure for infini- If P and the dynamics on it are periodfccan be reduced
tesimal intervals is to a unit cell with periodic boundary conditions. In this case

m ao eXpKTo+ al eXpKTl (22)
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0.7 T . . termining whether and by how much a particle jumps to the
left or to the right on the lattice. We consider a lattice with
0.65 period 1 and a change of the coordinate®by depending on
K the location in the subintervdglo,1], namelyA(x)=—1 if
0.6 xe[0a,], A(X)=1 if xe[a,,1]. To calculate the average
speed or the diffusion coefficient an average over long tra-
0.55 jectories is required. The average speed is
05 1 a;expkri—agexpkry
= — . (24)
(1) a, exprTy+agexpk
0.45
Again if k=0 (nontransient chagshe return timer sets the
0.4 time scale only, and the PM and TPM give the same result.

But for k>0 (transient chagseven the sign of the speed can
change when computing it with the usual PM, i.e., when
Eetting 7(x)=(7)=const. Results for the diffusion coeffi-
ient will be published elsewhere.

In conclusion, we have shown that the return time.e.,
both the PM and TPM can be separated into a reduced mdp€ time between two successive intersections on the Poin-
(which maps the unit cell into itselfplus a shiftA(x) de- caresurfe}ceP,, is arelevant quantity in transient chaoshe
scribing the transit between the cefls7,18. Such systems Usual Poincarenap does not reflect the long-time averages
can be characterized by the drift speed and diffusion coeffiof the flow satisfactorily and can even be completely mis-
cient. If particles can be lost from the point of view of dif- '€ading. The solution is to use a true-time Poincerap
fusion by absorption, chemical reaction or escape in direc] PM and its generalized Frobenius-Perron operafy
tions transverse to the extension of the system, we refer tyhere we can also define conditionally invariant measure
transient diffusio19-21. We setA=A and we obtain a and natural measure. Esqqpe rate, Liapunov exponents, drift
shift density o, in analogy to the procedure abover, speed, etc., depend significantly efx) and are described

=TLATp,,. We then determine the drift speed as the nor-correctly only by using the TPM. ’Therefore the necessary
malized shift per time generalization of the normal Poincaneap is the true-time

Poincaremap if the system in question is a repeller.

FIG. 2. The leading escape rate of the piecewise parabolic ma
as a function of the derivative af(x), 7.
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