46 research outputs found

    Two-dimensional low resolution raman spectroscopy applied to fast discrimination of clinically relevant microorganisms: a whole-organism fingerprinting approach

    Get PDF
    The discrimination of the bacteria that cause gastroenteritis through classical microbiological methods is very efficient in the great majority of the cases. However, the high cost of chemicals and the time spent for such identifications, about four days, could generate serious consequences for the patients. Thus, the search for low cost spectroscopic methods which would allow a fast and reagentless discrimination of these microorganisms is extremely relevant. In this work the main microorganisms that cause gastroenteritis: E. coli, S. chroleraesuis, S. flexneri were studied. For each of the microorganisms sixty different dispersions were prepared using physiological solution as solvent and its Raman spectra recorded. The 1D spectra obtained were similar, making it very difficult to differentiate the microorganisms. However, applying the 2D correlation method, it was possible to identify the microorganisms evaluated using the synchronous spectrum as whole-organism fingerprinting in a reduced time interval (~10 h).A diferenciação de bactérias causadoras de gastrenterites através de métodos microbiológicos clássicos é muito eficiente, na maior parte dos casos. Todavia, o elevado custo dos reagentes e o tempo necessário para tais determinações, cerca de 4 dias, podem causar sérias conseqüências, quando os pacientes são crianças, idosos ou adultos com baixa resistência imunológica. Assim, a pesquisa por métodos espectroscópicos de baixo custo, que permitam tais determinações com pouco uso de reagentes e em curtos intervalos de tempo é extremamente relevante. Neste trabalho os principais microrganismos causadores de gastrenterites, E. coli, S. chroleraesuis, S. flexneri foram avaliados. Foram preparadas sessenta dispersões para cada um dos microrganismos, usando solução fisiológica como solvente, e seus espectros adquiridos. Os espectros obtidos foram muito similares, tornando muito difícil a diferenciação dos microrganismos. Entretanto, aplicando a teoria de correlação generalizada em 2D, foi possível diferenciar os microrganismos avaliados usando o espectro síncrono como impressão digital do organismo em um curto intervalo de tempo (~10h).7378Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Synthesis of indium tin oxide nanoparticles by a nonhydrolytic sol-gel method

    Full text link
    Indium tin oxide nanoparticles were synthesized in two different sizes by a nonhydrolytic sol-gel method. These powders were then transformed into ITO via an intermediate metastable state at between 300 and 600 ºC. The presence of characteristic O-In-O and O-Sn-O bands at 480 and 670 cm-1 confirmed the formation of ITO. The X-ray diffraction patterns indicated the preferential formation of metastable hexagonal phase ITO (corundum type) as opposed to cubic phase ITO when the reflux time was less than 3 h and the heat treatment temperature was below 600 ºC. Particle morphology and crystal size were examined by scanning electron microscopy

    Comparison of antibacterial activity and cytotoxicity of silver nanoparticles and silver-loaded montmorillonite and saponite

    Get PDF
    Although silver nanoparticles are known for their antibacterial activity, little research has been carried out on what synthesis method provides the most effective particles. In this study, silver nanoparticles were synthesised via chemical reduction by using silver nitrate as the silver precursor, ascorbic acid as the reducing agent and sodium citrate as the stabilising agent. The solutions were adjusted to several pH values employing sodium hydroxide, citric acid or nitric acid. Dynamic light scattering and absorption spectra in the ultraviolet/visible region characterisation revealed that employing nitric acid to adjust the pH produced more varied and larger silver particle sizes. Then, silver nanoparticles were supported on montmorillonite and saponite through wet impregnation or ion exchange methods. Scanning electron microscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy characterisation confirmed that silver nanoparticles were successfully loaded onto the clay minerals. Next, the antibacterial activity of the samples was evaluated against Escherichia coli and Staphylococcus aureus by determining their minimum inhibitory concentrations and minimum bactericidal concentrations. The free silver nanoparticles did not show any antibacterial activity at 125 mg/L. In contrast, the silver-loaded samples obtained by wet impregnation and with a higher silver content displayed the strongest antibacterial effect. Finally, the cytotoxicity of the samples was determined in GM07492-A cell line by using an XTT colorimetric assay. The calculated IC50 values revealed that the supported silver nanoparticles were barely toxic. Thus, the silver-loaded clay minerals obtained here are promising antibacterial materials with a high-grade safety profile

    Preparation of catalysts based on iron(III) porphyrins heterogenized on silica obtained by the Sol-Gel process for hydroxylation and epoxidation reactions

    Full text link
    Solid catalysts have been prepared by chemical interaction of iron(III) porphyrins with the surface of the pores of a silica matrix obtained by the sol-gel method. The presence of the complexes in the silica matrix and the morphology of the obtained particles were studied by UV-Vis spectroscopy, powder X-ray diffractometry, infrared spectroscopy, transmission electron microscopy, electron paramagnetic resonance and thermogravimetric analysis. The catalytic activity of the immobilized iron(III) porphyrins in the oxidation of (Z)-cyclooctene, cyclohexene and cyclohexane was evaluated in dichloromethane/acetonitrile 1:1 solvent mixture (v/v) using iodosylbenzene as oxidant. Results were compared with those achieved with the homogeneous counterparts

    Aminoiron(III)–porphyrin–alumina catalyst obtained by non-hydrolytic sol-gel process for heterogeneous oxidation of hydrocarbons

    Get PDF
    An aminoiron(III) porphyrin immobilized on an alumina matrix was prepared and used as catalyst for the oxidation of organic substrates. Powder alumina had been prepared by a non-hydrolytic sol-gel method through condensation of aluminum chloride with anhydrous ethanol. Then, iron(III) [5,10,15,20-tetrakis(2,6-dichloro-3-aminophenyl)-porphyrin] was immobilized on the alumina powder under magnetic stirring, reflux, and inert atmosphere. Ultraviolet–visible and infrared spectroscopies, powder X-ray diffraction, scanning electron microscopy and thermal analysis were applied for characterizing the resulting material, confirming that the ironporphyrin was immobilized on the alumina support. The catalytic activity of ironporphyrin/alumina was evaluated in the oxidation of (Z)-cyclooctene and cyclohexane and in the Baeyer-Villiger oxidation of cyclohexanone using iodosylbenzene or hydrogen peroxide as oxygen donors. The novel immobilized catalyst proved to be a promising system for the efficient and selective oxidation of the organic substrates with 85–92% selectivity to the epoxide in the oxidation of alkenes and 25–41% to the ketone in the oxidation of cyclohexane. As for the Baeyer-Villiger oxidation of cyclohexanone, good conversion to ԑ-caprolactone was observed as well. The material is a reusable heterogeneous catalyst, which makes it more economically feasible than its homogeneous counterpar

    Effect of chemical modification of palygorskite and sepiolite by 3-aminopropyltriethoxisilane on adsorption of cationic and anionic dyes

    Get PDF
    [EN]A study has been performed on the removal of representative cationic and anionic dyes, methylene blue and metanil yellow, from aqueous solutions using fibrous clay minerals grafted with amine groups using (3- aminopropyl)triethoxysilane as functionalizing agent. Parameters affecting dye uptake, including contact time and dye concentration, the desorption process, pH and the recovery of both the dyes and the adsorbents, were evaluated. The adsorption capacities were 49.48 and 47.03 mg/g for grafted palygorskite and 60.00 and 59.78 mg/g for grafted sepiolite, for methylene blue and metanil yellow dyes, respectively. Adsorption of the anionic dye was enhanced by the grafting process. Grafted clay mineral adsorbents proved to be efficient to remove the contaminants from a real wastewater from textile industry within 30 min. Both adsorbents showed good reusability and the maximum adsorption capacity was maintained stable after a 2-cycle test. Thus, hybrid adsorbents based on fibrous clay minerals can efficiently be applied in adsorption/desorption cycles for removal of dye

    Fenilsilicato dopado com Eu III obtido pelo método sol-gel

    Full text link
    In this work, we report the synthesis and the photoluminescence features of a Eu(III)-doped modified silica matrix obtained by the sol-gel method. The matrix was prepared by reaction between tetraethylorthosilicate and phenyltriethoxysilane alkoxide. The hydrolysis occurred using basic catalysis. The solids were treated at 100, 200 and 300 ºC during 4 h and the structure was determined by thermogravimetric analysis (TG/DTG), nuclear magnetic resonance (NMR 29Si and 13C), infrared spectroscopy (IR) and photoluminescence (PL). The PL spectra display the Eu(III) lines characteristic of the ion, 5D0 -> 7F J (J=0, 1, 2, 3, 4), the blue emission as ascribed in the silica matrix. The NMR and TG showed the stability of hybrid silica
    corecore