869 research outputs found

    Clebsch-Gordan and 6j-coefficients for rank two quantum groups

    Get PDF
    We calculate (q-deformed) Clebsch-Gordan and 6j-coefficients for rank two quantum groups. We explain in detail how such calculations are done, which should allow the reader to perform similar calculations in other cases. Moreover, we tabulate the q-Clebsch-Gordan and 6j-coefficients explicitly, as well as some other topological data associated with theories corresponding to rank-two quantum groups. Finally, we collect some useful properties of the fusion rules of particular conformal field theories.Comment: 43 pages. v2: minor changes and added references. For mathematica notebooks containing the various q-CG and 6j symbols, see http://arxiv.org/src/1004.5456/an

    On the Two q-Analogue Logarithmic Functions

    Full text link
    There is a simple, multi-sheet Riemann surface associated with e_q(z)'s inverse function ln_q(w) for 0< q < 1. A principal sheet for ln_q(w) can be defined. However, the topology of the Riemann surface for ln_q(w) changes each time "q" increases above the collision point of a pair of the turning points of e_q(x). There is also a power series representation for ln_q(1+w). An infinite-product representation for e_q(z) is used to obtain the ordinary natural logarithm ln{e_q(z)} and the values of sum rules for the zeros "z_i" of e_q(z). For |z|<|z_1|, e_q(z)=exp{b(z)} where b(z) is a simple, explicit power series in terms of values of these sum rules. The values of the sum rules for the q-trigonometric functions, sin_q(z) and cos_q(z), are q-deformations of the usual Bernoulli numbers.Comment: This is the final version to appear in J.Phys.A: Math. & General. Some explict formulas added, and to update the reference

    Quantum spin coverings and statistics

    Full text link
    SL_q(2) at odd roots of unity q^l =1 is studied as a quantum cover of the complex rotation group SO(3,C), in terms of the associated Hopf algebras of (quantum) polynomial functions. We work out the irreducible corepresentations, the decomposition of their tensor products and a coquasitriangular structure, with the associated braiding (or statistics). As an example, the case l=3 is discussed in detail.Comment: 15 page

    Quantum Liouville theory and BTZ black hole entropy

    Full text link
    In this paper I give an explicit conformal field theory description of (2+1)-dimensional BTZ black hole entropy. In the boundary Liouville field theory I investigate the reducible Verma modules in the elliptic sector, which correspond to certain irreducible representations of the quantum algebra U_q(sl_2) \odot U_{\hat{q}}(sl_2). I show that there are states that decouple from these reducible Verma modules in a similar fashion to the decoupling of null states in minimal models. Because ofthe nonstandard form of the Ward identity for the two-point correlation functions in quantum Liouville field theory, these decoupling states have positive-definite norms. The explicit counting from these states gives the desired Bekenstein-Hawking entropy in the semi-classical limit when q is a root of unity of odd order.Comment: LaTeX, 33 pages, 4 eps figure

    Factorizable ribbon quantum groups in logarithmic conformal field theories

    Full text link
    We review the properties of quantum groups occurring as Kazhdan--Lusztig dual to logarithmic conformal field theory models. These quantum groups at even roots of unity are not quasitriangular but are factorizable and have a ribbon structure; the modular group representation on their center coincides with the representation on generalized characters of the chiral algebra in logarithmic conformal field models.Comment: 27pp., amsart++, xy. v2: references added, some other minor addition

    Spin chains with dynamical lattice supersymmetry

    Full text link
    Spin chains with exact supersymmetry on finite one-dimensional lattices are considered. The supercharges are nilpotent operators on the lattice of dynamical nature: they change the number of sites. A local criterion for the nilpotency on periodic lattices is formulated. Any of its solutions leads to a supersymmetric spin chain. It is shown that a class of special solutions at arbitrary spin gives the lattice equivalents of the N=(2,2) superconformal minimal models. The case of spin one is investigated in detail: in particular, it is shown that the Fateev-Zamolodchikov chain and its off-critical extension admits a lattice supersymmetry for all its coupling constants. Its supersymmetry singlets are thoroughly analysed, and a relation between their components and the weighted enumeration of alternating sign matrices is conjectured.Comment: Revised version, 52 pages, 2 figure

    Describing semigroups with defining relations of the form xy=yz xy and yx=zy and connections with knot theory

    Get PDF
    We introduce a knot semigroup as a cancellative semigroup whose defining relations are produced from crossings on a knot diagram in a way similar to the Wirtinger presentation of the knot group; to be more precise, a knot semigroup as we define it is closely related to such tools of knot theory as the twofold branched cyclic cover space of a knot and the involutory quandle of a knot. We describe knot semigroups of several standard classes of knot diagrams, including torus knots and torus links T(2, n) and twist knots. The description includes a solution of the word problem. To produce this description, we introduce alternating sum semigroups as certain naturally defined factor semigroups of free semigroups over cyclic groups. We formulate several conjectures for future research

    Combining Effects and Coeffects via Grading

    Get PDF
    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by the Association for Computing Machinery.Effects\textit{Effects} and coeffects\textit{coeffects} are two general, complementary aspects of program behaviour. They roughly correspond to computations which change the execution context (effects) versus computations which make demands on the context (coeffects). Effectful features include partiality, non-determinism, input-output, state, and exceptions. Coeffectful features include resource demands, variable access, notions of linearity, and data input requirements. The effectful or coeffectful behaviour of a program can be captured and described via type-based analyses, with fine grained information provided by monoidal effect annotations and semiring coeffects. Various recent work has proposed models for such typed calculi in terms of graded (strong) monads\textit{graded (strong) monads} for effects and graded (monoidal) comonads\textit{graded (monoidal) comonads} for coeffects. Effects and coeffects have been studied separately so far, but in practice many computations are both effectful and coeffectful, e.g., possibly throwing exceptions but with resource requirements. To remedy this, we introduce a new general calculus with a combined effect-coeffect system\textit{effect-coeffect system}. This can describe both the changes\textit{changes} and requirements\textit{requirements} that a program has on its context, as well as interactions between these effectful and coeffectful features of computation. The effect-coeffect system has a denotational model in terms of effect-graded monads and coeffect-graded comonads where interaction is expressed via the novel concept of graded distributive laws\textit{graded distributive laws}. This graded semantics unifies the syntactic type theory with the denotational model. We show that our calculus can be instantiated to describe in a natural way various different kinds of interaction between a program and its evaluation context.Orchard was supported by EPSRC grant EP/M026124/1 and EP/K011715/1 (whilst previously at Imperial College London), Katsumata by JSPS KAKENHI grant JP15K00014, Uustalu by Estonian Min. of Educ. and Res. grant IUT33-13 and Estonian Sci. Found. grant 9475. Gaboardi’s work was done in part while at the University of Dundee, UK supported by EPSRC grant EP/M022358/1

    Harmonic Sums and Mellin Transforms up to two-loop Order

    Get PDF
    A systematic study is performed on the finite harmonic sums up to level four. These sums form the general basis for the Mellin transforms of all individual functions fi(x)f_i(x) of the momentum fraction xx emerging in the quantities of massless QED and QCD up to two--loop order, as the unpolarized and polarized splitting functions, coefficient functions, and hard scattering cross sections for space and time-like momentum transfer. The finite harmonic sums are calculated explicitly in the linear representation. Algebraic relations connecting these sums are derived to obtain representations based on a reduced set of basic functions. The Mellin transforms of all the corresponding Nielsen functions are calculated.Comment: 44 pages Latex, contract number adde
    corecore