6,449 research outputs found

    Characterization of low loss microstrip resonators as a building block for circuit QED in a 3D waveguide

    Full text link
    Here we present the microwave characterization of microstrip resonators made from aluminum and niobium inside a 3D microwave waveguide. In the low temperature, low power limit internal quality factors of up to one million were reached. We found a good agreement to models predicting conductive losses and losses to two level systems for increasing temperature. The setup presented here is appealing for testing materials and structures, as it is free of wire bonds and offers a well controlled microwave environment. In combination with transmon qubits, these resonators serve as a building block for a novel circuit QED architecture inside a rectangular waveguide

    Towards energy-autonomous wake-up receiver using visible light communication

    Get PDF
    The use of Visible Light Communication (VLC) in wake-up communication systems is a potential energy-efficient and low-cost solution for wireless communication of consumer electronics. In this paper, we go one step further and propose the use of visible light both for wake-up communication and energy harvesting purposes, with the final objective of an energy-autonomous wake-up receiver module. We first present the details and the design criteria of this novel system. We then present the results of evaluation of design criteria such as solar panel and capacitor type choices. To evaluate the performance of the developed wake-up system with energy-autonomous receiver system, we perform realistic indoor scenario tests, analyzing the effect of varying distances, angles, and light intensities as well as the effect of presence of interfering lights.Peer ReviewedPostprint (author's final draft

    49Cr: Towards full spectroscopy up to 4 MeV

    Full text link
    The nucleus 49Cr has been studied analysing gamma-gamma coincidences in the reaction 46Ti(alpha,n)49Cr at the bombarding energy of 12 MeV. The level scheme has been greatly extended at low excitation energy and several new lifetimes have been determined by means of the Doppler Shift Attenuation Method. Shell model calculations in the full pf configuration space reproduce well negative-parity levels. Satisfactory agreement is obtained for positive parity levels by extending the configuration space to include a nucleon-hole either in the 1d3/2 or in the 2s1/2 orbitals. A nearly one-to-one correspondence is found between experimental and theoretical levels up to an excitation energy of 4 MeV. Experimental data and shell model calculations are interpreted in terms of the Nilsson diagram and the particle-rotor model, showing the strongly coupled nature of the bands in this prolate nucleus. Nine values of K(pi) are proposed for the levels observed in this experiment. As a by-result it is shown that the values of the experimental magnetic moments in 1f7/2 nuclei are well reproduced without quenching the nucleon g-factors.Comment: 13 pages, 8 figure

    πNN\pi NN coupling determined beyond the chiral limit

    Get PDF
    Within the conventional QCD sum rules, we calculate the πNN\pi NN coupling constant, gπNg_{\pi N}, beyond the chiral limit using two-point correlation function with a pion. We consider the Dirac structure, iÎł5i\gamma_5, at mπ2m_\pi^2 order, which has clear dependence on the PS and PV coupling schemes for the pion-nucleon interactions. For a consistent treatment of the sum rule, we include the linear terms in quark mass as they constitute the same chiral order as mπ2m_\pi^2. Using the PS coupling scheme for the pion-nucleon interaction, we obtain gπN=13.3±1.2g_{\pi N}=13.3\pm 1.2, which is very close to the empirical πNN\pi NN coupling. This demonstrates that going beyond the chiral limit is crucial in determining the coupling and the pseudoscalar coupling scheme is preferable from the QCD point of view.Comment: 8 pages, revtex, some errors are corrected, substantially revise

    The ZEUS Forward Plug Calorimeter with Lead-Scintillator Plates and WLS Fiber Readout

    Get PDF
    A Forward Plug Calorimeter (FPC) for the ZEUS detector at HERA has been built as a shashlik lead-scintillator calorimeter with wave length shifter fiber readout. Before installation it was tested and calibrated using the X5 test beam facility of the SPS accelerator at CERN. Electron, muon and pion beams in the momentum range of 10 to 100 GeV/c were used. Results of these measurements are presented as well as a calibration monitoring system based on a 60^{60}Co source.Comment: 38 pages (Latex); 26 figures (ps

    Experimental setup for camera-based measurements of electrically and optically stimulated luminescence of silicon solar cells and wafers

    Get PDF
    We report in detail on the luminescence imaging setup developed within the last years in our laboratory. In this setup, the luminescence emission of silicon solar cells or silicon wafers is analyzed quantitatively. Charge carriers are excited electrically (electroluminescence) using a power supply for carrier injection or optically (photoluminescence) using a laser as illumination source. The luminescence emission arising from the radiative recombination of the stimulated charge carriers is measured spatially resolved using a camera. We give details of the various components including cameras, optical filters for electro- and photo-luminescence, the semiconductor laser and the four-quadrant power supply. We compare a silicon charged-coupled device (CCD) camera with a back-illuminated silicon CCD camera comprising an electron multiplier gain and a complementary metal oxide semiconductor indium gallium arsenide camera. For the detection of the luminescence emission of silicon we analyze the dominant noise sources along with the signal-to-noise ratio of all three cameras at different operation conditions. © 2011 American Institute of Physics

    Mid-J CO emission from the Orion BN/KL explosive outflow

    Full text link
    High spatial resolution low-J 12CO observations have shown that the wide-angle outflow seen in the Orion BN/KL region correlates with the famous H2 fingers. Recently, high-resolution large-scale mappings of mid- and higher-J CO emissions have been reported toward the Orion molecular cloud 1 core region using the APEX telescope. Therefore, it is of interest to investigate this outflow in the higher-J 12CO emission, which is likely excited by shocks. The observations were carried out using the dual-color heterodyne array CHAMP+ on the APEX telescope. The images of the Orion BN/KL region were obtained in the 12CO J=6-5 and J=7-6 transitions with angular resolutions of 8.6 and 7.4 arcsec, respectively. The results show a good agreement between our higher-J 12CO emission and SMA low-J 12CO data, which indicates that this wide-angle outflow in Orion BN/KL is likely the result of an explosive event that is related to the runaway objects from a dynamically decayed multiple system. From our observations, we estimate that the kinetic energy of this explosive outflow is about 1-2x10^47 erg. In addition, a scenario has been proposed where part of the outflow is decelerated and absorbed in the cloud to explain the lack of CO bullets in the southern part of BN/KL, which in turn induces the methanol masers seen in this region.Comment: 5 pages, 4 figure

    CHAMP+ observations of warm gas in M17 SW

    Get PDF
    Since the main cooling lines of the gas phase are important tracers of the interstellar medium in Galactic and extragalactic sources, proper and detailed understanding of their emission, and the ambient conditions of the emitting gas, is necessary for a robust interpretation of the observations. With high resolution (7"-9") maps (~3x3 pc^2) of mid-J molecular lines we aim to probe the physical conditions and spatial distribution of the warm (50 to few hundred K) and dense gas (n(H_2)>10^5 cm^-3) across the interface region of M17 SW nebula. We have used the dual color multiple pixel receiver CHAMP+ on APEX telescope to obtain a 5'.3x4'.7 map of the J=6-5 and J=7-6 transitions of 12CO, the 13CO J=6-5 line, and the {^3P_2}-{^3P_1} 370 um fine-structure transition of [C I] in M17 SW. LTE and non-LTE radiative transfer models are used to constrain the ambient conditions. The warm gas extends up to a distance of ~2.2 pc from the M17 SW ridge. The 13CO J=6-5 and [C I] 370 um lines have a narrower spatial extent of about 1.3 pc along a strip line at P.A=63 deg. The structure and distribution of the [C I] {^3P_2}-{^3P_1} 370 um map indicate that its emission arises from the interclump medium with densities of the order of 10^3 cm^-3. The warmest gas is located along the ridge of the cloud, close to the ionization front. An LTE approximation indicates that the excitation temperature of the embedded clumps goes up to ~120 K. The non-LTE model suggests that the kinetic temperature at four selected positions cannot exceed 230 K in clumps of density n(H_2)~5x10^5 cm^-3, and that the warm T_k>100 K and dense (n(H_2)>10^4 cm^-3) gas traced by the mid-J 12CO lines represent just about 2% of the bulk of the molecular gas. The clump volume filling factor ranges between 0.04 and 0.11 at these positions.Comment: Accepted for publication in Astronomy and Astrophysics, 12 pages, 10 figures, 1 tabl
    • 

    corecore