353 research outputs found

    LabVIEW interface with Tango control system for a multi-technique X-ray spectrometry IAEA beamline end-station at Elettra Sincrotrone Trieste

    Get PDF
    A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (µXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools

    A Tool for GIXRF/XRR simulation and data analysis

    Get PDF
    Ponencia presentada en el Monte Carlo Simulation Tools for X-Ray Imaging and Fluorescence Workshop, 2014The IAEA has developed a beamline end-station facility that it is currently installed at the newly developed XRF beamline of Elettra Sincrotrone Trieste, ItalyThe end-station called Ultra High Vacuum Chamber (UHVC) is a multipurpose facility for applying simultaneously various complementary and advanced variants of X-Ray Spectrometry (XRS) techniques, including: Total Reflection X-ray Fluorescence Analysis (TXRF) Grazing Incidence/Exit XRF analysis (GIXRF- GEXRF) Near Edge X-ray Absorption Fine Structure (NEXAFS) X-ray Reflectometry (XRR) The current development of GIXRF/XRR simulations/analysis tool aims at assisting end-users in data processing and interpretation.Fil: Leani, Juan José. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Leani, Juan José. Nuclear Science and Instrumentation Laboratory, IAEA Laboratories; Austria.Física Atómica, Molecular y Química (física de átomos y moléculas incluyendo colisión, interacción con radiación, resonancia magnética, Moessbauer Efecto.

    Peripheral Innate Immune Activation Correlates With Disease Severity in GRN Haploinsufficiency.

    Get PDF
    Objective: To investigate associations between peripheral innate immune activation and frontotemporal lobar degeneration (FTLD) in progranulin gene (GRN) haploinsufficiency. Methods: In this cross-sectional study, ELISA was used to measure six markers of innate immunity (sCD163, CCL18, LBP, sCD14, IL-18, and CRP) in plasma from 30 GRN mutation carriers (17 asymptomatic, 13 symptomatic) and 29 controls. Voxel based morphometry was used to model associations between marker levels and brain atrophy in mutation carriers relative to controls. Linear regression was used to model relationships between plasma marker levels with mean frontal white matter integrity [fractional anisotropy (FA)] and the FTLD modified Clinical Dementia Rating Scale sum of boxes score (FTLD-CDR SB). Results: Plasma sCD163 was higher in symptomatic GRN carriers [mean 321 ng/ml (SD 125)] compared to controls [mean 248 ng/ml (SD 58); p < 0.05]. Plasma CCL18 was higher in symptomatic GRN carriers [mean 56.9 pg/ml (SD 19)] compared to controls [mean 40.5 pg/ml (SD 14); p < 0.05]. Elevation of plasma LBP was associated with white matter atrophy in the right frontal pole and left inferior frontal gyrus (p FWE corrected <0.05) in all mutation carriers relative to controls. Plasma LBP levels inversely correlated with bilateral frontal white matter FA (R2 = 0.59, p = 0.009) in mutation carriers. Elevation in plasma was positively correlated with CDR-FTLD SB (b = 2.27 CDR units/μg LBP/ml plasma, R2 = 0.76, p = 0.003) in symptomatic carriers. Conclusion: FTLD-GRN is associated with elevations in peripheral biomarkers of macrophage-mediated innate immunity, including sCD163 and CCL18. Clinical disease severity and white matter integrity are correlated with blood LBP, suggesting a role for peripheral immune activation in FTLD-GRN

    Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: a GENFI study

    Get PDF
    OBJECTIVE: To determine whether exosomal microRNAs (miRNAs) in cerebrospinal fluid (CSF) of patients with frontotemporal dementia (FTD) can serve as diagnostic biomarkers, we assessed miRNA expression in the Genetic Frontotemporal Dementia Initiative (GENFI) cohort and in sporadic FTD. METHODS: GENFI participants were either carriers of a pathogenic mutation in progranulin, chromosome 9 open reading frame 72 or microtubule-associated protein tau or were at risk of carrying a mutation because a first-degree relative was a known symptomatic mutation carrier. Exosomes were isolated from CSF of 23 presymptomatic and 15 symptomatic mutation carriers and 11 healthy non-mutation carriers. Expression of 752 miRNAs was measured using quantitative PCR (qPCR) arrays and validated by qPCR using individual primers. MiRNAs found differentially expressed in symptomatic compared with presymptomatic mutation carriers were further evaluated in a cohort of 17 patients with sporadic FTD, 13 patients with sporadic Alzheimer's disease (AD) and 10 healthy controls (HCs) of similar age. RESULTS: In the GENFI cohort, miR-204-5p and miR-632 were significantly decreased in symptomatic compared with presymptomatic mutation carriers. Decrease of miR-204-5p and miR-632 revealed receiver operator characteristics with an area of 0.89 (90% CI 0.79 to 0.98) and 0.81 (90% CI 0.68 to 0.93), respectively, and when combined an area of 0.93 (90% CI 0.87 to 0.99). In sporadic FTD, only miR-632 was significantly decreased compared with AD and HCs. Decrease of miR-632 revealed an area of 0.90 (90% CI 0.81 to 0.98). CONCLUSIONS: Exosomal miR-204-5p and miR-632 have potential as diagnostic biomarkers for genetic FTD and miR-632 also for sporadic FTD

    An IAEA Multi-technique X-ray Spectrometry End-station at Elettra Sincrotrone Trieste: Benchmarking Results and Interdisciplinary Applications

    Get PDF
    The International Atomic Energy Agency (IAEA) jointly with the Elettra Sincrotrone Trieste (EST) operates a multipurpose X-ray spectrometry endstation at the X-ray Fluorescence beamline (10.1L). The facility has been available to external users since the beginning of 2015 through the peer-review process of EST. Using this collaboration framework, the IAEA supports and promotes synchrotron-radiation-based research and training activities for various research groups from the IAEA Member States, especially those who have limited previous experience and resources to access a synchrotron radiation facility. This paper aims to provide a broad overview about various analytical capabilities, intrinsic features and performance figures of the IAEA X-ray spectrometry endstation through the measured results. The IAEA-EST endstation works with monochromatic X-rays in the energy range 3.7-14keV for the Elettra storage ring operating at 2.0 or 2.4GeV electron energy. It offers a combination of different advanced analytical probes, e.g. X-ray reflectivity, X-ray absorption fine-structure measurements, grazing-incidence X-ray fluorescence measurements, using different excitation and detection geometries, and thereby supports a comprehensive characterization for different kinds of nanostructured and bulk materials.A broad overview of the various analytical capabilities, intrinsic features and performance figures of the IAEA X-ray spectrometry endstation operated at the X-ray Fluorescence beamline of Elettra Sincrotrone Trieste is given, and different applications are demonstrated to familiarize the user community with the applicable intersdisciplinary research.Fil: Karydas, A.. International Atomic Energy Agency; Austria. National Centre for Scientific Research "Demokritos"; GreciaFil: Czyzycki, M.. International Atomic Energy Agency; Austria. AGH University of Science and Technology. Faculty of Physics and Applied Computer Science ; PoloniaFil: Leani, Juan Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. International Atomic Energy Agency; AustriaFil: Migliori, A.. International Atomic Energy Agency; Austria. Nuclear Spectrometry And Appications Lab, Iaea. Onu; AustriaFil: Osán, J.. Hungarian Academy of Sciences Centre for Energy Research; Hungría. International Atomic Energy Agency; AustriaFil: Bogovac, M.. International Atomic Energy Agency; AustriaFil: Wrobel, P.. AGH University of Science and Technology. Faculty of Physics and Applied Computer Science ; PoloniaFil: Vakula, N.. International Atomic Energy Agency; AustriaFil: Padilla Alvarez, R.. International Atomic Energy Agency; AustriaFil: Menk, Ralf Hendrik. Elettra-Sincrotrone Trieste SCpA di Interesse Nazionale; Italia. University of Saskatchewan; CanadáFil: Gol, M. G.. Iranian Light Source Facility; IránFil: Antonelli, M.. Istituto Nazionale di Fisica Nucleare; Italia. Elettra-Sincrotrone Trieste SCpA di Interesse Nazionale; ItaliaFil: Tiwari, M. K.. Raja Ramanna Centre for Advanced Technology; IndiaFil: Caliri, C.. Istituto Nazionale di Fisica Nucleare; ItaliaFil: Vogel Mikuš, K.. Jozef Stefan Institute; Eslovenia. University of Ljubljana; EsloveniaFil: Darby, I.. Elettra-Sincrotrone Trieste SCpA di Interesse Nazionale; Italia. International Atomic Energy Agency; AustriaFil: Kaiser, R.. International Atomic Energy Agency; Austri

    Plasma Tau and Neurofilament Light in Frontotemporal Lobar Degeneration and Alzheimer Disease

    Get PDF
    Objective: To test the hypothesis that plasma total tau (t-tau) and neurofilament light chain (NfL) concentrations may have a differential role in the study of frontotemporal lobar degeneration syndromes (FTLD-S) and clinically diagnosed Alzheimer disease syndromes (AD-S), we determined their diagnostic and prognostic value in FTLD-S and AD-S and their sensitivity to pathologic diagnoses. Methods: We measured plasma t-tau and NfL with the Simoa platform in 265 participants: 167 FTLD-S, 43 AD-S, and 55 healthy controls (HC), including 82 pathology-proven cases (50 FTLD-tau, 18 FTLD-TDP, 2 FTLD-FUS, and 12 AD) and 98 participants with amyloid PET. We compared cross-sectional and longitudinal biomarker concentrations between groups, their correlation with clinical measures of disease severity, progression, and survival, and cortical thickness. Results: Plasma NfL, but not plasma t-tau, discriminated FTLD-S from HC and AD-S from HC. Both plasma NfL and t-tau were poor discriminators between FLTD-S and AD-S. In pathology-confirmed cases, plasma NfL was higher in FTLD than AD and in FTLD-TDP compared to FTLD-tau, after accounting for age and disease severity. Plasma NfL, but not plasma t-tau, predicted clinical decline and survival and correlated with regional cortical thickness in both FTLD-S and AD-S. The combination of plasma NfL with plasma t-tau did not outperform plasma NfL alone. Conclusion: Plasma NfL is superior to plasma t-tau for the diagnosis and prediction of clinical progression of FTLD-S and AD-S. Classification of Evidence: This study provides Class III evidence that plasma NfL has superior diagnostic and prognostic performance vs plasma t-tau in FTLD and AD
    corecore