493 research outputs found

    Density functional theory for strongly-correlated bosonic and fermionic ultracold dipolar and ionic gases

    Full text link
    We introduce a density functional formalism to study the ground-state properties of strongly-correlated dipolar and ionic ultracold bosonic and fermionic gases, based on the self-consistent combination of the weak and the strong coupling limits. Contrary to conventional density functional approaches, our formalism does not require a previous calculation of the interacting homogeneous gas, and it is thus very suitable to treat systems with tunable long-range interactions. Due to its asymptotic exactness in the regime of strong correlation, the formalism works for systems in which standard mean-field theories fail.Comment: 5 pages, 2 figure

    Rotating Bose-Einstein condensates: Closing the gap between exact and mean-field solutions

    Full text link
    When a Bose-Einstein condensed cloud of atoms is given some angular momentum, it forms vortices arranged in structures with a discrete rotational symmetry. For these vortex states, the Hilbert space of the exact solution separates into a "primary" space related to the mean-field Gross-Pitaevskii solution and a "complementary" space including the corrections beyond mean-field. Considering a weakly-interacting Bose-Einstein condensate of harmonically-trapped atoms, we demonstrate how this separation can be used to close the conceptual gap between exact solutions for systems with only a few atoms and the thermodynamic limit for which the mean-field is the correct leading-order approximation. Although we illustrate this approach for the case of weak interactions, it is expected to be more generally valid.Comment: 8 pages, 5 figure

    Determining the effective constitutive parameters of finite periodic structures: photonic crystals and metamaterials

    Get PDF
    Cataloged from PDF version of article.A novel approach to find the effective electric and A novel approach to find the effective electric and magnetic parameters of finite periodic structures is proposed. The method uses the reflection coefficients at the interface between a homogenous half-space and the periodic structure of different thicknesses. The reflection data are then approximated by complex exponentials, from which one can deduce the wavenumber, and the effective electric and magnetic properties of the equivalent structure by a simple comparison to the geometrical series representation of the generalized reflection from a homogenous slab. Since the effective parameters are for the homogenous equivalent of the periodic structure, the results obtained are expected to be independent of the number of unit cells used in the longitudinal direction. Although the proposed method is quite versatile and applicable to any finite periodic structure, photonic crystals and metamaterials with metallic inclusions have been used to demonstrate the application of the method in this paper. © 2008 IEEE

    Cariostatic effect of fluoride-containing restorative materials associated with fluoride gels on root dentin

    Full text link
    Secondary caries is still the main cause of restoration replacement, especially on the root surface OBJECTIVE: This in vitro study evaluated the cariostatic effects of fluoride-containing restorative materials associated with fluoride gels, on root dentin. MATERIALS AND METHODS: A randomized complete block design was used to test the effects of the restorative systems, fluoride regimes and the interactions among them at different distances from restoration margins. Standardized cavities were prepared on 240 bovine root specimens and randomly assigned to 15 groups of treatments (n=16). Cavities were filled with the following restorative materials: Ketac-Fil (3M-ESPE); Vitremer (3M-ESPE); Dyract/Prime & Bond NT (Dentsply); Charisma/Gluma One Bond (Heraeus Kulzer) and the control, Z250/Single Bond (3M-ESPE). The specimens were subjected to a pH-cycling model designed to simulate high-caries activity. During the cycles, 1.23% acidulated phosphate fluoride, 2.0% neutral sodium fluoride or deionized/distilled water (control) was applied to the specimens for 4 min. The surface Knoop microhardness test was performed before (KHNi) and after (KHNf) the pH cycles at 100, 200 and 300 mm from the margins. Dentin microhardness loss was represented by the difference in initial and final values (KHNi - KHNf). Data were analyzed by Friedman's and Wilcoxon's tests, ANOVA and Tukey's test (α=5%). RESULTS: The interaction of restorative systems and topical treatments was not significant (p=0.102). Dentin microhardness loss was lowest closer to the restoration. Ketac-fil presented the highest cariostatic effect. Vitremer presented a moderate effect, while Dyract and Charisma did not differ from the control, Z250. The effects of neutral and acidulated fluoride gels were similar to each other and higher than the control. CONCLUSION: Conventional and resin-modified glass ionomer cements as well as neutral and acidulated fluoride gels inhibit the progression of artificial caries adjacent to restorations. The associated effect of fluoride-containing restorative materials and gels could not be demonstrated
    corecore