48 research outputs found

    GTP cyclohydrolase I gene polymorphisms are associated with endothelial dysfunction and oxidative stress in patients with type 2 diabetes mellitus

    Get PDF
    Background: The genetic background of atherosclerosis in type 2 diabetes mellitus (T2DM) is complex and poorly understood. Studying genetic components of intermediate phenotypes, such as endothelial dysfunction and oxidative stress, may aid in identifying novel genetic components for atherosclerosis in diabetic patients.<p></p> Methods: Five polymorphisms forming two haplotype blocks within the GTP cyclohydrolase 1 gene, encoding a rate limiting enzyme in tetrahydrobiopterin synthesis, were studied in the context of flow and nitroglycerin mediated dilation (FMD and NMD), intima-media thickness (IMT), and plasma concentrations of von Willebrand factor (vWF) and malondialdehyde (MDA).<p></p> Results: Rs841 was associated with FMD (p = 0.01), while polymorphisms Rs10483639, Rs841, Rs3783641 (which form a single haplotype) were associated with both MDA (p = 0.012, p = 0.0015 and p = 0.003, respectively) and vWF concentrations (p = 0.016, p = 0.03 and p = 0.045, respectively). In addition, polymorphism Rs8007267 was also associated with MDA (p = 0.006). Haplotype analysis confirmed the association of both haplotypes with studied variables.<p></p> Conclusions: Genetic variation of the GCH1 gene is associated with endothelial dysfunction and oxidative stress in T2DM patients

    Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms

    Get PDF
    Antimicrobial research is being pressured to look for more effective therapeutics for the ever-growing antibiotic-resistant infections, and antimicrobial peptides (AMP) and antimicrobial combinations are promising solutions. This work evaluates colistin-AMP combinations against two major pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, encompassing non- and resistant strains. Colistin (CST) combined with the AMP temporin A (TEMP-A), citropin 1.1 (CIT-1.1) and tachyplesin I linear analogue (TP-I-L) was tested against planktonic, single- and double-species biofilm cultures. Overall synergy for planktonic P. aeruginosa and synergy/additiveness for planktonic S. aureus were observed. Biofilm growth prevention was achieved with synergy and additiveness. Pre-established 24 h-old biofilms were harder to eradicate, especially for S. aureus and double-species biofilms; still, some synergy and addictiveness was observed for higher concentrations, including for the biofilms of resistant strains. Different treatment times and growth media did not greatly influence AMP activity. CST revealed low toxicity compared with the other AMP but its combinations were toxic for high concentrations. Overall, combinations reduced effective AMP concentrations, mainly in prevention scenarios. Improvement of effectiveness and toxicity of therapeutic strategies will be further investigated.The authors acknowledge the Portuguese Foundation for Science and Technology (FCT) (http://www.fct.pt/), under the scope of the strategic funding of UID/B10/04469/2013 and COMPETE 2020 (POCI-01-0145-FEDER-006684). This study was also supported by FCT and the European Community fund FEDER, through Program COMPETE, and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 -Programa Operacional Regional do Norte. This work was also partially funded by the [14V105] Contract-Programme from the University of Vigo (https://mw.uvigo.gal/ uvigo_en/) and the Agrupamento INBIOMED (http://inbiomed.webs.uvigaes/) from DXPCTSUG-FEDER unha maneira de facer Europa (2012/273) and co-financed by the European Regional Development Fund (http://ec.europleuiregionaL policy/EN/fundingierdf/) under the Operational Programme Innovative Economy (WNP-POIG.01.04.00-22-052/11).). Lipopharm.pl (http://www.lipopharm.p1/) provided support in the form of salaries for authors DG and WK. The authors also acknowledge the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) (https://www.escmid.org/) for the Research Grant 2014 to Anglia Lourenco, and FCT for the PhD Grant of Paula Jorge (grant number SFRH/BD/88192/2012). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Unveiling the fate of adhering bacteria to antimicrobial surfaces: expression of resistance-associated genes and macrophage-mediated phagocytosis

    Get PDF
    Since most antibacterial coatings reported to fight biomaterial-associated infections (BAI) fail in completely preventing bacterial colonization, it is crucial to know the impact of that small fraction of adhered bacteria in BAI recrudescence. This study aims to understand the fate of Staphylococcus aureus able to adhere to an antimicrobial coating previously developed, in terms of potential development of bacterial resistance and their macrophage-mediated phagocytosis. Antimicrobial coating comprised the co-immobilization of Palm peptide and DNase I onto polydimethylsiloxane. Expression of genes associated to resistance and virulence mechanisms showed that cells in contact with antimicrobial surfaces for a long period of 30 days, exhibit genes equally or less expressed, as compared to cells recovered from control surfaces. Recovered cells also exhibit the same susceptibility patterns, which strengthens the evidence of no resistance development. Remarkably, cells adhered to modified surfaces shows a reduced metabolic activity upon vancomycin treatment unlike the cells found on control surfaces, which can be identified as a clinical opportunity for prophylactically administration after implant surgery. Furthermore, results highlight that functionalization of PDMS with Palm and DNase I should not compromise the action of host immune cells. The overall results reinforce the potential of this antimicrobial strategy to fight BAI.This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI01-0145-FEDER-006684) and BioTecNorte operation (NORTE-01 0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte. The authors also acknowledge the support by FCT and the European Community fund FEDER, through Program COMPETE, under the scope of the Project AntiPep PTDC/SAUSAP/113196/2009 (FCOMP-01-0124-FEDER-016012) and the PhD Grant of Diana Alves (SFRH/BD/78063/2011) and Andreia Magalhães (SFRH/BD/132165/2017). A special thanks to Doctor Agostinho Carvalho and Doctor Cristina Amorim from Life and Health Sciences Research Institute (ICVS), University of Minho for kindly providing the monocyte cell line used in this study. Doctor Nuno Cerca, from CEB, Centre of Biological Engineering, University of Minho, is also acknowledged for his important contribution on the interpretation of gene expression results.info:eu-repo/semantics/publishedVersio

    Cu(II) ion coordination to the pentadecapeptide model of SPARC copper-binding site

    No full text
    SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein with many biological functions: it mediates the interactions between cells and the extracellular matrix, playing a role in angiogenesis, tumorigenesis, caractogenesis and wound healing. Proteolysis of SPARC gives rise to a number of oligopeptides which can regulate angiogenesis in vivo and the biological activity of which has been related to their association with endogenous or exogenous copper ion. Human SPARC consists of three distinct modules. Module II is follistatinlike and contains two copper binding sites, the strongest of which—the cationic region 2 (amino acids 114–130)— contains the sequence Gly–His–Lys. In order to shed more light on the biological role of metal complexes formed by SPARC and its fragments, more information is needed on their stoichiometry, stability and structure in solution. In the present paper a potentiometric and spectroscopic investigation on Cu(II) complexes with the SPARC114–128 fragment, protected at both its amino and carboxylic ends, is reported. This peptide (Ac–TLEGTKKGHKLHLDY– NH2) constitutes a good model to the strong copper-binding site of the protein. The whole experimental data suggest that complex-formation is started by the two His residues, subsequently involving up to three amido nitrogens, as pH increases. The coordination of the two histydyl imidazoles is able to promote amide ionisation in the physiological pH range and this could be the key to the SPARC affinity for Cu(II) ion

    Silver Nanoparticles as Chlorhexidine and Metronidazole Drug Delivery Platforms: Their Potential Use in Treating Periodontitis [Corrigendum]

    No full text
    Steckiewicz KP, Cieciórski P, Barcińska E, et al. Int J Nanomedicine. 2022;17:495–517. Our authors have advised that the funding source number listed in the Acknowledgment section on page 513 was incorrect. The sentence should read from “This work was supported by PRELUDIUM grant 2017/27/N/NZ7/0267 from the Polish National Science Centre…” to “This work was supported by PRELUDIUM grant 2017/27/N/NZ7/02675 from the Polish National Science Centre…” The authors apologize for this oversight

    Cu(II) ion coordination to the pentadecapeptide model of SPARC copper-binding site

    No full text
    SPARC (Secreted Protein, Acidic and Rich in Cysteine) is a matricellular glycoprotein with many biological functions: it mediates the interactions between cells and the extracellular matrix, playing a role in angiogenesis, tumorigenesis, caractogenesis and wound healing. Proteolysis of SPARC gives rise to a number of oligopeptides which can regulate angiogenesis in vivo and the biological activity of which has been related to their association with endogenous or exogenous copper ion. Human SPARC consists of three distinct modules. Module II is follistatin-like and contains two copper binding sites, the strongest of which-the cationic region 2 (amino acids 114-130)-contains the sequence Gly-His-Lys. In order to shed more light on the biological role of metal complexes formed by SPARC and its fragments, more information is needed on their stoichiometry, stability and structure in solution. In the present paper a potentiometric and spectroscopic investigation on Cu(II) complexes with the SPARC(114-128) fragment, protected at both its amino and carboxylic ends, is reported. This peptide (Ac-TLEGTKKGHKLHLDY-NH2) constitutes a good model to the strong copper-binding site of the protein. The whole experimental data suggest that complex-formation is started by the two His residues, subsequently involving up to three amido nitrogens, as pH increases. The coordination of the two histydyl imidazoles is able to promote amide ionisation in the physiological pH range and this could be the key to the SPARC affinity for Cu(II) ion
    corecore