93 research outputs found

    All You Can Eat: High Performance Capacity and Plasticity in the Common Big-Eared Bat, Micronycteris microtis (Chiroptera: Phyllostomidae)

    Get PDF
    Ecological specialization and resource partitioning are expected to be particularly high in the species-rich communities of tropical vertebrates, yet many species have broader ecological niches than expected. In Neotropical ecosystems, Neotropical leaf-nosed bats (Phyllostomidae) are one of the most ecologically and functionally diverse vertebrate clades. Resource partitioning in phyllostomids might be achieved through differences in the ability to find and process food. We selected Micronycteris microtis, a very small (5–7 g) animalivorous phyllostomid, to explore whether broad resource use is associated with specific morphological, behavioral and performance traits within the phyllostomid radiation. We documented processing of natural prey and measured bite force in free-ranging M. microtis and other sympatric phyllostomids. We found that M. microtis had a remarkably broad diet for prey size and hardness. For the first time, we also report the consumption of vertebrates (lizards), which makes M. microtis the smallest carnivorous bat reported to date. Compared to other phyllostomids, M. microtis had the highest bite force for its size and cranial shape and high performance plasticity. Bite force and cranial shape appear to have evolved rapidly in the M. microtis lineage. High performance capacity and high efficiency in finding motionless prey might be key traits that allow M. microtis, and perhaps other species, to successfully co-exist with other gleaning bats

    Sexually Selected Infanticide in a Polygynous Bat

    Get PDF
    Background: Adult individuals of many species kill unrelated conspecific infants for several adaptive reasons ranging from predation or resource competition to the prevention of misdirected parental care. Moreover, infanticide can increase the reproductive success of the aggressor by killing the offspring of competitors and thereafter mating with the victimized females. This sexually selected infanticide predominantly occurs in polygynous species, with convincing evidence for primates, carnivores, equids, and rodents. Evidence for bats was predicted but lacking. Methodology/Principal Findings: Here we report the first case, to our knowledge, of sexually selected infanticide in a bat, the polygynous white-throated round-eared bat, Lophostoma silvicolum. Behavioral studies in a free-living population revealed that an adult male repeatedly attacked and injured the pups of two females belonging to his harem, ultimately causing the death of one pup. The infanticidal male subsequently mated with the mother of the victimized pup and this copulation occurred earlier than any other in his harem. Conclusions/Significance: Our findings indicate that sexually selected infanticide is more widespread than previously thought, adding bats as a new taxon performing this strategy. Future work on other bats, especially polygynous species in the tropics, has great potential to investigate the selective pressures influencing the evolution of sexually selecte

    What a Plant Sounds Like: The Statistics of Vegetation Echoes as Received by Echolocating Bats

    Get PDF
    A critical step on the way to understanding a sensory system is the analysis of the input it receives. In this work we examine the statistics of natural complex echoes, focusing on vegetation echoes. Vegetation echoes constitute a major part of the sensory world of more than 800 species of echolocating bats and play an important role in several of their daily tasks. Our statistical analysis is based on a large collection of plant echoes acquired by a biomimetic sonar system. We explore the relation between the physical world (the structure of the plant) and the characteristics of its echo. Finally, we complete the story by analyzing the effect of the sensory processing of both the echolocation and the auditory systems on the echoes and interpret them in the light of information maximization. The echoes of all different plant species we examined share a surprisingly robust pattern that was also reproduced by a simple Poisson model of the spatial reflector arrangement. The fine differences observed between the echoes of different plant species can be explained by the spatial characteristics of the plants. The bat's emitted signal enhances the most informative spatial frequency range where the species-specific information is large. The auditory system filtering affects the echoes in a similar way, thus enhancing the most informative spatial frequency range even more. These findings suggest how the bat's sensory system could have evolved to deal with complex natural echoes

    The Missing Part of Seed Dispersal Networks: Structure and Robustness of Bat-Fruit Interactions

    Get PDF
    Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i) some bat species depend more on fruits than others, and (ii) that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H2' = 0.37±0.10, mean ± SD) and similar nestedness (NODF = 0.56±0.12) than pollination networks. All networks were modular (M = 0.32±0.07), and had on average four cohesive subgroups (modules) of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum), although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55±0.10) and plants (R = 0.68±0.09). Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks

    Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems

    Get PDF
    Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats – nearly half the Neotropical bat species – change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures

    Ensemble Composition and Activity Levels of Insectivorous Bats in Response to Management Intensification in Coffee Agroforestry Systems

    Get PDF
    Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats – nearly half the Neotropical bat species – change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures

    Enhancing sampling design in mist-net bat surveys by accounting for sample size optimization

    Get PDF
    The advantages of mist-netting, the main technique used in Neotropical bat community studies to date, include logistical implementation, standardization and sampling representativeness. Nonetheless, study designs still have to deal with issues of detectability related to how different species behave and use the environment. Yet there is considerable sampling heterogeneity across available studies in the literature. Here, we approach the problem of sample size optimization. We evaluated the common sense hypothesis that the first six hours comprise the period of peak night activity for several species, thereby resulting in a representative sample for the whole night. To this end, we combined re-sampling techniques, species accumulation curves, threshold analysis, and community concordance of species compositional data, and applied them to datasets of three different Neotropical biomes (Amazonia, Atlantic Forest and Cerrado). We show that the strategy of restricting sampling to only six hours of the night frequently results in incomplete sampling representation of the entire bat community investigated. From a quantitative standpoint, results corroborated the existence of a major Sample Area effect in all datasets, although for the Amazonia dataset the six-hour strategy was significantly less species-rich after extrapolation, and for the Cerrado dataset it was more efficient. From the qualitative standpoint, however, results demonstrated that, for all three datasets, the identity of species that are effectively sampled will be inherently impacted by choices of sub-sampling schedule. We also propose an alternative six-hour sampling strategy (at the beginning and the end of a sample night) which performed better when resampling Amazonian and Atlantic Forest datasets on bat assemblages. Given the observed magnitude of our results, we propose that sample representativeness has to be carefully weighed against study objectives, and recommend that the trade-off between logistical constraints and additional sampling performance should be carefully evaluated
    corecore