55 research outputs found

    A sigmoidal fit for pressure-volume curves of idiopathic pulmonary fibrosis patients on mechanical ventilation: clinical implications

    Get PDF
    OBJECTIVE: Respiratory pressure-volume curves fitted to exponential equations have been used to assess disease severity and prognosis in spontaneously breathing patients with idiopathic pulmonary fibrosis. Sigmoidal equations have been used to fit pressure-volume curves for mechanically ventilated patients but not for idiopathic pulmonary fibrosis patients. We compared a sigmoidal model and an exponential model to fit pressure-volume curves from mechanically ventilated patients with idiopathic pulmonary fibrosis. METHODS: Six idiopathic pulmonary fibrosis patients and five controls underwent inflation pressure-volume curves using the constant-flow technique during general anesthesia prior to open lung biopsy or thymectomy. We identified the lower and upper inflection points and fit the curves with an exponential equation, V = A-B.e-k.P, and a sigmoid equation, V = a+b/(1+e-(P-c)/d). RESULTS: The mean lower inflection point for idiopathic pulmonary fibrosis patients was significantly higher (10.5 ± 5.7 cm H2O) than that of controls (3.6 ± 2.4 cm H2O). The sigmoidal equation fit the pressure-volume curves of the fibrotic and control patients well, but the exponential equation fit the data well only when points below 50% of the inspiratory capacity were excluded. CONCLUSION: The elevated lower inflection point and the sigmoidal shape of the pressure-volume curves suggest that respiratory system compliance is decreased close to end-expiratory lung volume in idiopathic pulmonary fibrosis patients under general anesthesia and mechanical ventilation. The sigmoidal fit was superior to the exponential fit for inflation pressure-volume curves of anesthetized patients with idiopathic pulmonary fibrosis and could be useful for guiding mechanical ventilation during general anesthesia in this condition

    miR-155 in the progression of lung fibrosis in systemic sclerosis

    Get PDF
    Background: MicroRNA (miRNA) control key elements of mRNA stability and likely contribute to the dysregulated lung gene expression observed in systemic sclerosis associated interstitial lung disease (SSc-ILD). We analyzed the miRNA gene expression of tissue and cells from patients with SSc-ILD. A chronic lung fibrotic murine model was used. Methods: RNA was isolated from lung tissue of 12 patients with SSc-ILD and 5 controls. High-resolution computed tomography (HRCT) was performed at baseline and 2-3 years after treatment. Lung fibroblasts and peripheral blood mononuclear cells (PBMC) were isolated from healthy controls and patients with SSc-ILD. miRNA and mRNA were analyzed by microarray, quantitative polymerase chain reaction, and/or Nanostring; pathway analysis was performed by DNA Intelligent Analysis (DIANA)-miRPath v2.0 software. Wild-type and miR-155 deficient (miR-155ko) mice were exposed to bleomycin. Results: Lung miRNA microarray data distinguished patients with SSc-ILD from healthy controls with 185 miRNA differentially expressed (q < 0.25). DIANA-miRPath revealed 57 Kyoto Encyclopedia of Genes and Genomes pathways related to the most dysregulated miRNA. miR-155 and miR-143 were strongly correlated with progression of the HRCT score. Lung fibroblasts only mildly expressed miR-155/miR-21 after several stimuli. miR-155 PBMC expression strongly correlated with lung function tests in SSc-ILD. miR-155ko mice developed milder lung fibrosis, survived longer, and weaker lung induction of several genes after bleomycin exposure compared to wild-type mice. Conclusions: miRNA are dysregulated in the lungs and PBMC of patients with SSc-ILD. Based on mRNA-miRNA interaction analysis and pathway tools, miRNA may play a role in the progression of the disease. Our findings suggest that targeting miR-155 might provide a novel therapeutic strategy for SSc-ILD

    miR-155 in the progression of lung fibrosis in systemic sclerosis

    Get PDF
    Background\ud MicroRNA (miRNA) control key elements of mRNA stability and likely contribute to the dysregulated lung gene expression observed in systemic sclerosis associated interstitial lung disease (SSc-ILD). We analyzed the miRNA gene expression of tissue and cells from patients with SSc-ILD. A chronic lung fibrotic murine model was used.\ud \ud Methods\ud RNA was isolated from lung tissue of 12 patients with SSc-ILD and 5 controls. High-resolution computed tomography (HRCT) was performed at baseline and 2–3 years after treatment. Lung fibroblasts and peripheral blood mononuclear cells (PBMC) were isolated from healthy controls and patients with SSc-ILD. miRNA and mRNA were analyzed by microarray, quantitative polymerase chain reaction, and/or Nanostring; pathway analysis was performed by DNA Intelligent Analysis (DIANA)-miRPath v2.0 software. Wild-type and miR-155 deficient (miR-155ko) mice were exposed to bleomycin.\ud \ud Results\ud Lung miRNA microarray data distinguished patients with SSc-ILD from healthy controls with 185 miRNA differentially expressed (q < 0.25). DIANA-miRPath revealed 57 Kyoto Encyclopedia of Genes and Genomes pathways related to the most dysregulated miRNA. miR-155 and miR-143 were strongly correlated with progression of the HRCT score. Lung fibroblasts only mildly expressed miR-155/miR-21 after several stimuli. miR-155 PBMC expression strongly correlated with lung function tests in SSc-ILD. miR-155ko mice developed milder lung fibrosis, survived longer, and weaker lung induction of several genes after bleomycin exposure compared to wild-type mice.\ud \ud Conclusions\ud miRNA are dysregulated in the lungs and PBMC of patients with SSc-ILD. Based on mRNA-miRNA interaction analysis and pathway tools, miRNA may play a role in the progression of the disease. Our findings suggest that targeting miR-155 might provide a novel therapeutic strategy for SSc-ILD

    Azacitidine as epigenetic priming for chemotherapy is safe and well-tolerated in infants with newly diagnosed KMT2A-rearranged acute lymphoblastic leukemia: Children’s Oncology Group trial AALL15P1

    Get PDF
    Infants less than 1 year old diagnosed with KMT2A-rearranged (KMT2A-r) acute lymphoblastic leukemia (ALL) are at high risk of remission failure, relapse, and death due to leukemia, despite intensive therapies. Infant KMT2A-r ALL blasts are characterized by DNA hypermethylation. Epigenetic priming with DNA methyltransferase inhibitors increases the cytotoxicity of chemotherapy in preclinical studies. The Children’s Oncology Group trial AALL15P1 tested the safety and tolerability of five days of azacitidine immediately prior to the start of chemotherapy on day six, in four post-induction chemotherapy courses for infants with newly diagnosed KMT2A-r ALL. The treatment was welltolerated, with only two of 31 evaluable patients (6.5%) experiencing dose-limiting toxicity. Whole genome bisulfite sequencing of peripheral blood mononuclear cells (PBMCs) demonstrated decreased DNA methylation in 87% of samples tested following five days of azacitidine. Event-free survival was similar to prior studies of newly diagnosed infant ALL. Azacitidine is safe and results in decreased DNA methylation of PBMCs in infants with KMT2A-r ALL, but the incorporation of azacitidine to enhance cytotoxicity did not impact survival. Clinicaltrials.gov identifier: NCT02828358

    Adaptive designs undertaken in clinical research: a review of registered clinical trials

    Get PDF
    Adaptive designs have the potential to improve efficiency in the evaluation of new medical treatments in comparison to traditional fixed sample size designs. However, they are still not widely used in practice in clinical research. Little research has been conducted to investigate what adaptive designs are being undertaken. This review highlights the current state of registered adaptive designs and their characteristics. The review looked at phase II, II/III and III trials registered on ClinicalTrials.gov from 29 February 2000 to 1 June 2014, supplemented with trials from the National Institute for Health Research register and known adaptive trials. A range of adaptive design search terms were applied to the trials extracted from each database. Characteristics of the adaptive designs were then recorded including funder, therapeutic area and type of adaptation. The results in the paper suggest that the use of adaptive designs has increased. They seem to be most often used in phase II trials and in oncology. In phase III trials, the most popular form of adaptation is the group sequential design. The review failed to capture all trials with adaptive designs, which suggests that the reporting of adaptive designs, such as in clinical trials registers, needs much improving. We recommend that clinical trial registers should contain sections dedicated to the type and scope of the adaptation and that the term 'adaptive design' should be included in the trial title or at least in the brief summary or design sections
    corecore