32 research outputs found

    Six RNA Viruses and Forty-One Hosts: Viral Small RNAs and Modulation of Small RNA Repertoires in Vertebrate and Invertebrate Systems

    Get PDF
    We have used multiplexed high-throughput sequencing to characterize changes in small RNA populations that occur during viral infection in animal cells. Small RNA-based mechanisms such as RNA interference (RNAi) have been shown in plant and invertebrate systems to play a key role in host responses to viral infection. Although homologs of the key RNAi effector pathways are present in mammalian cells, and can launch an RNAi-mediated degradation of experimentally targeted mRNAs, any role for such responses in mammalian host-virus interactions remains to be characterized. Six different viruses were examined in 41 experimentally susceptible and resistant host systems. We identified virus-derived small RNAs (vsRNAs) from all six viruses, with total abundance varying from “vanishingly rare” (less than 0.1% of cellular small RNA) to highly abundant (comparable to abundant micro-RNAs “miRNAs”). In addition to the appearance of vsRNAs during infection, we saw a number of specific changes in host miRNA profiles. For several infection models investigated in more detail, the RNAi and Interferon pathways modulated the abundance of vsRNAs. We also found evidence for populations of vsRNAs that exist as duplexed siRNAs with zero to three nucleotide 3′ overhangs. Using populations of cells carrying a Hepatitis C replicon, we observed strand-selective loading of siRNAs onto Argonaute complexes. These experiments define vsRNAs as one possible component of the interplay between animal viruses and their hosts

    'Gut health': a new objective in medicine?

    Get PDF
    'Gut health' is a term increasingly used in the medical literature and by the food industry. It covers multiple positive aspects of the gastrointestinal (GI) tract, such as the effective digestion and absorption of food, the absence of GI illness, normal and stable intestinal microbiota, effective immune status and a state of well-being. From a scientific point of view, however, it is still extremely unclear exactly what gut health is, how it can be defined and how it can be measured. The GI barrier adjacent to the GI microbiota appears to be the key to understanding the complex mechanisms that maintain gut health. Any impairment of the GI barrier can increase the risk of developing infectious, inflammatory and functional GI diseases, as well as extraintestinal diseases such as immune-mediated and metabolic disorders. Less clear, however, is whether GI discomfort in general can also be related to GI barrier functions. In any case, methods of assessing, improving and maintaining gut health-related GI functions are of major interest in preventive medicine

    Disaggregases, molecular chaperones that resolubilize protein aggregates

    Full text link

    Immunological control of herpes simplex virus infections

    Full text link

    Stimulating the RIG-I pathway to kill cells in the latent HIV reservoir following viral reactivation

    No full text
    The persistence of latent HIV proviruses in long-lived CD4(+) T cells despite antiretroviral therapy (ART)(1–3) is a major obstacle to viral eradication(4–6). Because current candidate latency-reversing agents (LRAs) induce HIV transcription but fail to clear these cellular reservoirs,(7–8) new approaches for killing these reactivated latent HIV reservoir cells are urgently needed. HIV latency depends upon transcriptional quiescence of the integrated provirus and circumvention of immune defense mechanisms(4–6,9). These defenses include cell-intrinsic innate responses that use pattern-recognition receptors (PRR) to detect viral pathogens and subsequently induce apoptosis of the infected cell(10). Retinoic acid-inducible gene I (RIG-I) forms one class of pattern-recognition receptors that mediates apoptosis and elimination of infected cells after recognition of viral RNA(11–14). Here we show that acitretin, an FDA-approved retinoic-acid derivative, enhances RIG-I signaling ex vivo, increases HIV transcription, and induces preferential apoptosis of HIV-infected cells. These effects are abrogated by RIG-I knockdown. Acitretin also decreases proviral DNA levels in CD4+ T cells from HIV-infected subjects on suppressive ART, an effect amplified by combination with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor. Pharmacologic enhancement of an innate cellular defense network could provide a means to eliminate reactivated cells in the latent HIV reservoir
    corecore