14 research outputs found

    Circadian Rhythm-Dependent Alterations of Gene Expression in Drosophila Brain Lacking Fragile X Mental Retardation Protein

    Get PDF
    Fragile X syndrome is caused by the loss of the FMR1 gene product, fragile X mental retardation protein (FMRP). The loss of FMRP leads to altered circadian rhythm behaviors in both mouse and Drosophila; however, the molecular mechanism behind this phenomenon remains elusive. Here we performed a series of gene expression analyses, including of both mRNAs and microRNAs (miRNAs), and identified a number of mRNAs and miRNAs (miRNA-1 and miRNA-281) with circadian rhythm-dependent altered expression in dfmr1 mutant flies. Identification of these RNAs lays the foundation for future investigations of the molecular pathway(s) underlying the altered circadian rhythms associated with loss of dFmr1

    A nonsense mutation in FMR1 causing fragile X syndrome

    Get PDF
    Fragile X syndrome is a common cause of inherited intellectual disability. It is caused by lack of the FMR1 gene product FMRP. The most frequent cause is the expansion of a CGG repeat located in the 5′UTR of FMR1. Alleles with 200 or more repeats become hypermethylated and transcriptionally silent. Only few patients with intragenic point mutations in FMR1 have been reported and, currently, routine analysis of patients referred for fragile X syndrome includes solely analysis for repeat expansion and methylation status. We identified a substitution in exon 2 of FMR1, c.80C>A, causing a nonsense mutation p.Ser27X, in a patient with classical clinical symptoms of fragile X syndrome. The mother who carried the mutation in heterozygous form presented with mild intellectual impairment. We conclude that further studies including western blot and DNA sequence analysis of the FMR1 gene should be performed in patients with typical symptoms of fragile X syndrome in whom no CGG repeat expansion is detected

    Molecular genetics of X-linked mental retardation: a complex picture emerging

    No full text
    Mental retardation or intellectual disability is a heterogeneous group of disorders of the human brain affecting 2–3% of the general population. It is becoming evident that a large proportion of mental retardation is genetically determined, which means that it can be molecularly defined and thus precisely diagnosed. Building knowledge and understanding about molecular processes leading to ‘malfunction of human brain’ will clearly bring benefits to patient management, disease prevention and ultimately disease treatment and will also assist in tackling much harder questions of the molecular basis of human cognitive ability. In this review the current knowledge of the molecular genetics of X-chromosome-linked mental retardation and its nonspecific forms in particular is discussed, together with limitations affecting diagnosis and likely new approaches that need to be implemented

    A unique case of reversion to normal size of a maternal premutation FMR1 allele in a normal boy

    Get PDF
    Fragile X syndrome (FXS) is caused mostly by expansion and subsequent methylation of the CGG repeat in the 5'UTR of the FMR1 gene, resulting in silencing of the gene, absence of FMRP and development of the FXS phenotype. The expansion also predisposes the CGG repeat and the flanking regions to further instability that may lead to mosaics between a full mutation and a premutation or, rarely, a normal or deleted allele. Here, we report on a 10-year-old boy with no FXS phenotype, who has a normal CGG tract, although he inherited the maternal expanded allele that causes FXS in his two brothers. Southern blotting demonstrated that the mother carries a premutation allele ( approximately 190 CGG), whereas the propositus shows a normal 5.2 kb fragment after HindIII digestion and a smaller 2.2 kb fragment after double HindIII-EagI digestion, without any apparent mosaicism in peripheral blood leukocytes. PCR and sequence analysis of the FMR1 5'UTR revealed an allele of 43 repeats, with two interspersed AGG triplets in position 10 and 25 and an exceptional CCG triplet in position 17. This latter creates an abnormal EagI site compatible with the smaller 2.2 kb fragment observed with Southern blotting. Haplotype analysis proved that the rearranged allele originated from the maternal expanded allele. To the best of our knowledge, this is the first non-mosaic case of reduction in the CGG tract of the FMR1 gene, resulting in a normal allele

    Excess Protein Synthesis in FXS Patient Lymphoblastoid Cells Can Be Rescued with a p110β-Selective Inhibitor

    No full text
    The fragile X mental retardation protein (FMRP) plays a key role for neurotransmitter-mediated signaling upstream of neuronal protein synthesis. Functional loss of FMRP causes the inherited intellectual disability fragile X syndrome (FXS), and leads to increased and stimulus-insensitive neuronal protein synthesis in FXS animal models. Previous studies suggested that excess protein synthesis mediated by dysregulated signal transduction contributes to the majority of neurological defects in FXS, and might be a promising target for therapeutic strategies in patients. However, possible impairments in receptor-dependent protein synthesis have not been evaluated in patient cells so far. Using quantitative fluorescent metabolic labeling, we demonstrate that protein synthesis is exaggerated and cannot be further increased by cytokine stimulation in human fragile X lymphoblastoid cells. Our previous work suggested that loss of FMRP-mediated regulation of protein expression and enzymatic function of the PI3K catalytic subunit p110β contributes to dysregulated protein synthesis in a mouse model of FXS. Here, we demonstrate that these molecular mechanisms are recapitulated in FXS patient cells. Furthermore, we show that treatment with a p110β-selective antagonist rescues excess protein synthesis in synaptoneurosomes from an FXS mouse model and in patient cells. Our work suggests that dys-regulated protein synthesis and PI3K activity in patient cells might be suitable biomarkers to quantify the efficacy of drugs to ameliorate molecular mechanisms underlying FXS, and could be used for drug screens to refine treatment strategies for individual patients. Moreover, we provide rationale to pursue p110β-targeting treatments as potential therapy in FXS, and possibly other autism spectrum disorders

    Intragenic FMR1 disease-causing variants: a significant mutational mechanism leading to Fragile-X syndrome

    No full text
    Fragile-X syndrome (FXS) is a frequent genetic form of intellectual disability (ID). The main recurrent mutagenic mechanism causing FXS is the expansion of a CGG repeat sequence in the 5′-UTR of the FMR1 gene, therefore, routinely tested in ID patients. We report here three FMR1 intragenic pathogenic variants not affecting this sequence, identified using high-throughput sequencing (HTS): a previously reported hemizygous deletion encompassing the last exon of FMR1, too small to be detected by array-CGH and inducing decreased expression of a truncated form of FMRP protein, in three brothers with ID (family 1) and two splice variants in boys with sporadic ID: a de novo variant c.990+1G>A (family 2) and a maternally inherited c.420-8A>G variant (family 3). After clinical reevaluation, the five patients presented features consistent with FXS (mean Hagerman's scores=15). We conducted a systematic review of all rare non-synonymous variants previously reported in FMR1 in ID patients and showed that six of them are convincing pathogenic variants. This study suggests that intragenic FMR1 variants, although much less frequent than CGG expansions, are a significant mutational mechanism leading to FXS and demonstrates the interest of HTS approaches to detect them in ID patients with a negative standard work-up
    corecore