33 research outputs found

    Protocol for the Arterial Revascularisation Trial (ART). A randomised trial to compare survival following bilateral versus single internal mammary grafting in coronary revascularisation [ISRCTN46552265]

    Get PDF
    BACKGROUND: Standard coronary artery bypass graft surgery uses a single internal mammary artery and supplemental vein or radial artery grafts. Several observational studies have suggested a survival benefit with two internal mammary artery grafts compared to a single internal mammary artery graft, but this has not been tested in a randomised trial. The Arterial Revascularisation Trial is a Medical Research Council and British Heart Foundation funded, multi-centre international trial comparing single internal mammary artery grafting versus bilateral internal mammary artery grafting. METHODS/DESIGN: Twenty centres in the UK, Australia, Poland and Brazil are planning to randomise 3000 coronary artery bypass graft surgery patients to single or bilateral internal mammary artery grafting. Supplemental grafts may be either saphenous vein or radial artery. Coronary artery bypass grafting can be performed as an on-pump or off-pump procedure. The primary outcome is survival at 10 years and secondary end-points include clinical events, quality of life and cost effectiveness. The effect of age, left ventricular function, diabetes, number of grafts, vein grafts and off-pump surgery are pre-specified subgroups. DISCUSSION: The Arterial Revascularisation Trial is one of the first randomised trials to evaluate the effects on survival and other clinical outcomes of single internal mammary artery grafting versus bilateral internal mammary artery grafting, and will help to establish the best approach for patients requiring coronary artery bypass graft surgery

    Circadian oscillator proteins across the kingdoms of life : Structural aspects 06 Biological Sciences 0601 Biochemistry and Cell Biology

    Get PDF
    Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms and control numerous biological processes in a range of organisms. These periodic rhythms are the result of a complex interplay of interactions among clock components. These components are specific to the organism but share molecular mechanisms that are similar across kingdoms. The elucidation of clock mechanisms in different kingdoms has recently started to attain the level of structural interpretation. A full understanding of these molecular processes requires detailed knowledge, not only of the biochemical and biophysical properties of clock proteins and their interactions, but also the three-dimensional structure of clockwork components. Posttranslational modifications (such as phosphorylation) and protein-protein interactions, have become a central focus of recent research, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. The three-dimensional structures for the cyanobacterial clock components are well understood, and progress is underway to comprehend the mechanistic details. However, structural recognition of the eukaryotic clock has just begun. This review serves as a primer as the clock communities move towards the exciting realm of structural biology
    corecore