117 research outputs found

    Homogeneous MGMT Immunoreactivity Correlates with an Unmethylated MGMT Promoter Status in Brain Metastases of Various Solid Tumors

    Get PDF
    The O6-methylguanine-methyltransferase (MGMT) promoter methylation status is a predictive parameter for the response of malignant gliomas to alkylating agents such as temozolomide. First clinical reports on treating brain metastases with temozolomide describe varying effects. This may be due to the fact that MGMT promoter methylation of brain metastases has not yet been explored in depth. Therefore, we assessed MGMT promoter methylation of various brain metastases including those derived from lung (n = 91), breast (n = 72) kidney (n = 49) and from malignant melanomas (n = 113) by methylation-specific polymerase chain reaction (MS-PCR) and MGMT immunoreactivity. Fifty-nine of 199 brain metastases (29.6%) revealed a methylated MGMT promoter. The methylation rate was the highest in brain metastases derived from lung carcinomas (46.5%) followed by those from breast carcinoma (28.8%), malignant melanoma (24.7%) and from renal carcinoma (20%). A significant correlation of homogeneous MGMT-immunoreactivity (>95% MGMT positive tumor cells) and an unmethylated MGMT promoter was found. Promoter methylation was detected in 26 of 61 (43%) tumors lacking MGMT immunoreactivity, in 17 of 63 (27%) metastases with heterogeneous MGMT expression, but only in 5 of 54 brain metastases (9%) showing a homogeneous MGMT immunoreactivity. Our results demonstrate that a significant number of brain metastases reveal a methylated MGMT-promoter. Based on an obvious correlation between homogeneous MGMT immunoreactivity and unmethylated MGMT promoter, we hypothesize that immunohistochemistry for MGMT may be a helpful diagnostic tool to identify those tumors that probably will not benefit from the use of alkylating agents. The discrepancy between promoter methylation and a lack of MGMT immunoreactivity argues for assessing MGMT promoter methylation both by immunohistochemical as well as by molecular approaches for diagnostic purposes

    Genetic and metabolic predictors of chemosensitivity in oligodendroglial neoplasms

    Get PDF
    The −1p/−19q genotype predicts chemosensitivity in oligodendroglial neoplasms, but some with intact 1p/19q also respond and not all with 1p/19q loss derive durable benefit from chemotherapy. We have evaluated the predictive and prognostic significance of pretherapy 201Tl and 18F-FDG SPECT and genotype in 38 primary and 10 recurrent oligodendroglial neoplasms following PCV chemotherapy. 1p/19q loss was seen in 8/15 OII, 6/15 OAII, 7/7 OIII, 3/11 OAIII and was associated with response (Fisher-Exact: P=0.000) and prolonged progression-free (log-rank: P=0.002) and overall survival (OS) (log-rank: P=0.0048). Response was unrelated to metabolism, with tumours with high or low metabolism showing response. Increased 18F-FDG or 201Tl uptake predicted shorter progression-free survival (PFS) in the series (log-rank: 201Tl P=0.0097, 18F-FDG P=0.0170) and in cases with or without the −1p/−19q genotype. Elevated metabolism was associated with shorter OS in cases with intact 1p/19q (log-rank: 18F-FDG P=0.0077; 201Tl P=0.0004) and shorter PFS in responders (log-rank: 18F-FDG P=0.005; 201Tl P=0.0132). 201Tl uptake and 1p/19q loss were independent predictors of survival in multivariate analysis. In this initial study, 201Tl and 18F-FDG uptake did not predict response to PCV, but may be associated with poor survival following therapy irrespective of genotype. This may be clinically useful warranting further study

    Promoter methylation analysis of O6-methylguanine-DNA methyltransferase in glioblastoma: detection by locked nucleic acid based quantitative PCR using an imprinted gene (SNURF) as a reference

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic silencing of the <it>MGMT </it>gene by promoter methylation is associated with loss of <it>MGMT </it>expression, diminished DNA-repair activity and longer overall survival in patients with glioblastoma who, in addition to radiotherapy, received alkylating chemotherapy with carmustine or temozolomide. We describe and validate a rapid methylation sensitive quantitative PCR assay (MS-qLNAPCR) using Locked Nucleic Acid (LNA) modified primers and an imprinted gene as a reference.</p> <p>Methods</p> <p>An analysis was made of a database of 159 GBM patients followed between April 2004 and October 2008. After bisulfite treatment, methylated and unmethylated CpGs were recognized by LNA primers and molecular beacon probes. The <it>SNURF </it>promoter of an imprinted gene mapped on 15q12, was used as a reference. This approach was used because imprinted genes have a balanced copy number of methylated and unmethylated alleles, and this feature allows an easy and a precise normalization.</p> <p>Results</p> <p>Concordance between already described nested MS-PCR and MS-qLNAPCR was found in 158 of 159 samples (99.4%). The MS-qLNAPCR assay showed a PCR efficiency of 102% and a sensitivity of 0.01% for LNA modified primers, while unmodified primers revealed lower efficiency (69%) and lower sensitivity (0.1%). <it>MGMT </it>promoter was found to be methylated using MS-qLNAPCR in 70 patients (44.02%), and completely unmethylated in 89 samples (55.97%). Median overall survival was of 24 months, being 20 months and 36 months, in patients with <it>MGMT </it>unmethylated and methylated, respectively. Considering <it>MGMT </it>methylation data provided by MS-qLNAPCR as a binary variable, overall survival was different between patients with GBM samples harboring <it>MGMT </it>promoter unmethylated and other patients with any percentage of <it>MGMT </it>methylation (p = 0.003). This difference was retained using other cut off values for <it>MGMT </it>methylation rate (i.e. 10% and 20% of methylated allele), while the difference was lost when 50% of <it>MGMT </it>methylated allele was used as cut-off.</p> <p>Conclusions</p> <p>We report and clinically validate an accurate, robust, and cost effective MS-qLNAPCR protocol for the detection and quantification of methylated <it>MGMT </it>alleles in GBM samples. Using MS-qLNAPCR we demonstrate that even low levels of <it>MGMT </it>promoter methylation have to be taken into account to predict response to temozolomide-chemotherapy.</p

    ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook

    Get PDF
    Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as ‘Medusa head antibodies’ due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook

    O6-Methylguanine-DNA methyltransferase protein expression by immunohistochemistry in brain and non-brain systemic tumours: systematic review and meta-analysis of correlation with methylation-specific polymerase chain reaction

    Get PDF
    Background: The DNA repair protein O6-Methylguanine-DNA methyltransferase (MGMT) confers resistance to alkylating agents. Several methods have been applied to its analysis, with methylation-specific polymerase chain reaction (MSP) the most commonly used for promoter methylation study, while immunohistochemistry (IHC) has become the most frequently used for the detection of MGMT protein expression. Agreement on the best and most reliable technique for evaluating MGMT status remains unsettled. The aim of this study was to perform a systematic review and meta-analysis of the correlation between IHC and MSP. Methods A computer-aided search of MEDLINE (1950-October 2009), EBSCO (1966-October 2009) and EMBASE (1974-October 2009) was performed for relevant publications. Studies meeting inclusion criteria were those comparing MGMT protein expression by IHC with MGMT promoter methylation by MSP in the same cohort of patients. Methodological quality was assessed by using the QUADAS and STARD instruments. Previously published guidelines were followed for meta-analysis performance. Results Of 254 studies identified as eligible for full-text review, 52 (20.5%) met the inclusion criteria. The review showed that results of MGMT protein expression by IHC are not in close agreement with those obtained with MSP. Moreover, type of tumour (primary brain tumour vs others) was an independent covariate of accuracy estimates in the meta-regression analysis beyond the cut-off value. Conclusions Protein expression assessed by IHC alone fails to reflect the promoter methylation status of MGMT. Thus, in attempts at clinical diagnosis the two methods seem to select different groups of patients and should not be used interchangeably

    ‘Medusa head ataxia’: the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 3: Anti-Yo/CDR2, anti-Nb/AP3B2, PCA-2, anti-Tr/DNER, other antibodies, diagnostic pitfalls, summary and outlook

    Full text link

    Treatment of Brain Tumors

    No full text
    corecore