95 research outputs found
The effect of spacer morphology on the aerosolization performance of metered-dose inhalers
Purpose: Respiratory drug delivery has been attracted great interest for the past decades, because of the high incidence of pulmonary diseases. However, despite its invaluable benefits, there are some major drawbacks in respiratory drug delivery, mainly due to the relatively high drug deposition in undesirable regions. One way to improve the efficiency of respiratory drug delivery through metered-dose inhalers (MDI) is placing a respiratory spacer between the inhaler exit and the mouth. The aim of this study was to assess the effect of type and shape of spacer on the aerosolization performance of MDIs.
Methods: A commercial Beclomethasone Dipropionate (BDP) MDI alone or equipped with two different spacer devices (roller and pear type) widely distributed in the world pharmaceutical market was used. The effect of spacers was evaluated by calculating aerosolization indexes such as fine particle fraction (FPF), mass median aerodynamic diameters (MMAD) and geometric standard deviation (GSD) using the next generation impactor.
Results: Although one of the spacers resulted in superior outcomes than the other one, but it was not statistically significant.
Conclusion: The results confirmed that the type and shape of spacer did not substantially influence the aerosolization performance of MDIs
A Linear Framework for Time-Scale Separation in Nonlinear Biochemical Systems
Cellular physiology is implemented by formidably complex biochemical systems with highly nonlinear dynamics, presenting a challenge for both experiment and theory. Time-scale separation has been one of the few theoretical methods for distilling general principles from such complexity. It has provided essential insights in areas such as enzyme kinetics, allosteric enzymes, G-protein coupled receptors, ion channels, gene regulation and post-translational modification. In each case, internal molecular complexity has been eliminated, leading to rational algebraic expressions among the remaining components. This has yielded familiar formulas such as those of Michaelis-Menten in enzyme kinetics, Monod-Wyman-Changeux in allostery and Ackers-Johnson-Shea in gene regulation. Here we show that these calculations are all instances of a single graph-theoretic framework. Despite the biochemical nonlinearity to which it is applied, this framework is entirely linear, yet requires no approximation. We show that elimination of internal complexity is feasible when the relevant graph is strongly connected. The framework provides a new methodology with the potential to subdue combinatorial explosion at the molecular level
A modular analysis of the Auxin signalling network
Auxin is essential for plant development from embryogenesis onwards. Auxin acts in large part through regulation of transcription. The proteins acting in the signalling pathway regulating transcription downstream of auxin have been identified as well as the interactions between these proteins, thus identifying the topology of this network implicating 54 Auxin Response Factor (ARF) and Aux/IAA (IAA) transcriptional regulators. Here, we study the auxin signalling pathway by means of mathematical modeling at the single cell level. We proceed analytically, by considering the role played by five functional modules into which the auxin pathway can be decomposed: the sequestration of ARF by IAA, the transcriptional repression by IAA, the dimer formation amongst ARFs and IAAs, the feedback loop on IAA and the auxin induced degradation of IAA proteins. Focusing on these modules allows assessing their function within the dynamics of auxin signalling. One key outcome of this analysis is that there are both specific and overlapping functions between all the major modules of the signaling pathway. This suggests a combinatorial function of the modules in optimizing the speed and amplitude of auxin-induced transcription. Our work allows identifying potential functions for homo- and hetero-dimerization of transcriptional regulators, with ARF:IAA, IAA:IAA and ARF:ARF dimerization respectively controlling the amplitude, speed and sensitivity of the response and a synergistic effect of the interaction of IAA with transcriptional repressors on these characteristics of the signaling pathway. Finally, we also suggest experiments which might allow disentangling the structure of the auxin signaling pathway and analysing further its function in plants
Topography as a modifier of breeding habitats and concurrent vulnerability to malaria risk in the western Kenya highlands
<p>Abstract</p> <p>Background</p> <p>Topographic parameters such as elevation, slope, aspect, and ruggedness play an important role in malaria transmission in the highland areas. They affect biological systems, such as larval habitats presence and productivity for malaria mosquitoes. This study investigated whether the distribution of local spatial malaria vectors and risk of infection with malaria parasites in the highlands is related to topography.</p> <p>Methods</p> <p>Four villages each measuring 9 Km<sup>2 </sup>lying between 1400-1700 m above sea level in the western Kenya highlands were categorized into a pair of broad and narrow valley shaped terrain sites. Larval, indoor resting adult malaria vectors and infection surveys were collected originating from the valley bottom and ending at the hilltop on both sides of the valley during the rainy and dry seasons. Data collected at a distance of ≤500 m from the main river/stream were categorized as valley bottom and those above as uphill. Larval surveys were categorized by habitat location while vectors and infections by house location.</p> <p>Results</p> <p>Overall, broad flat bottomed valleys had a significantly higher number of anopheles larvae/dip in their habitats than in narrow valleys during both the dry (1.89 versus 0.89 larvae/dip) and the rainy season (1.66 versus 0.89 larvae/dip). Similarly, vector adult densities/house in broad valley villages were higher than those within narrow valley houses during both the dry (0.64 versus 0.40) and the rainy season (0.96 versus 0.09). Asymptomatic malaria prevalence was significantly higher in participants residing within broad than those in narrow valley villages during the dry (14.55% vs. 7.48%) and rainy (17.15% vs. 1.20%) season. Malaria infections were wide spread in broad valley villages during both the dry and rainy season, whereas over 65% of infections were clustered at the valley bottom in narrow valley villages during both seasons.</p> <p>Conclusion</p> <p>Despite being in the highlands, local areas within low gradient topography characterized by broad valley bottoms have stable and significantly high malaria risk unlike those with steep gradient topography, which exhibit seasonal variations. Topographic parameters could therefore be considered in identification of high-risk malaria foci to help enhance surveillance or targeted control activities in regions where they are most needed.</p
Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature America for personal use, not for redistribution. The definitive version was published in Nature Neuroscience 12 (2009): 864-871, doi:10.1038/nn.2346.Selected vulnerability of neurons in Huntington’s disease (HD) suggests alterations in a cellular
process particularly critical for neuronal function. Supporting this idea, pathogenic Htt (polyQ-Htt)
inhibits fast axonal transport (FAT) in various cellular and animal HD models (mouse and squid),
but the molecular basis of this effect remains unknown. Here we show that polyQ-Htt inhibits FAT
through a mechanism involving activation of axonal JNK. Accordingly, increased activation of JNK
was observed in vivo in cellular and animal HD models. Additional experiments indicate that
polyQ-Htt effects on FAT are mediated by the neuron-specific JNK3, and not ubiquitously
expressed JNK1, providing a molecular basis for neuron-specific pathology in HD. Mass
spectrometry identified a residue in the kinesin-1 motor domain phosphorylated by JNK3, and this
modification reduces kinesin-1 binding to microtubules. These data identify JNK3 as a critical
mediator of polyQ-Htt toxicity and provides a molecular basis for polyQ-Htt-induced inhibition of
FAT.This work was supported by 2007/2008 MBL summer fellowship to GM; an HDSA
grant to GM; NIH grants MH066179 to GB; and ALSA, Muscular Dystrophy Association, and NIH
(NS23868, NS23320, NS41170) grants to STB
A Functional Misexpression Screen Uncovers a Role for Enabled in Progressive Neurodegeneration
Drosophila is a well-established model to study the molecular basis of neurodegenerative diseases. We carried out a misexpression screen to identify genes involved in neurodegeneration examining locomotor behavior in young and aged flies. We hypothesized that a progressive loss of rhythmic activity could reveal novel genes involved in neurodegenerative mechanisms. One of the interesting candidates showing progressive arrhythmicity has reduced enabled (ena) levels. ena down-regulation gave rise to progressive vacuolization in specific regions of the adult brain. Abnormal staining of pre-synaptic markers such as cystein string protein (CSP) suggest that axonal transport could underlie the neurodegeneration observed in the mutant. Reduced ena levels correlated with increased apoptosis, which could be rescued in the presence of p35, a general Caspase inhibitor. Thus, this mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism
Identification of Neural Outgrowth Genes using Genome-Wide RNAi
While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi) on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new genes that have important functions in the nervous system
- …