970 research outputs found
The Hilbert Series of the One Instanton Moduli Space
The moduli space of k G-instantons on R^4 for a classical gauge group G is
known to be given by the Higgs branch of a supersymmetric gauge theory that
lives on Dp branes probing D(p + 4) branes in Type II theories. For p = 3,
these (3 + 1) dimensional gauge theories have N = 2 supersymmetry and can be
represented by quiver diagrams. The F and D term equations coincide with the
ADHM construction. The Hilbert series of the moduli spaces of one instanton for
classical gauge groups is easy to compute and turns out to take a particularly
simple form which is previously unknown. This allows for a G invariant
character expansion and hence easily generalisable for exceptional gauge
groups, where an ADHM construction is not known. The conjectures for
exceptional groups are further checked using some new techniques like sewing
relations in Hilbert Series. This is applied to Argyres-Seiberg dualities.Comment: 43 pages, 22 figure
The functional maturation of M cells is dramatically reduced in the Peyer's patches of aged mice
The transcytosis of antigens across the follicle-associated epithelium (FAE) of Peyer's patches by microfold cells (M cells) is important for the induction of efficient immune responses to mucosal antigens. The mucosal immune response is compromised by ageing, but effects on M cells were unknown. We show that M-cell density in the FAE of aged mice was dramatically reduced. As a consequence, aged Peyer's patches were significantly deficient in their ability to transcytose particulate lumenal antigen across the FAE. Ageing specifically impaired the expression of Spi-B and the downstream functional maturation of M cells. Ageing also dramatically impaired C-C motif chemokine ligand 20 expression by the FAE. As a consequence, fewer B cells were attracted towards the FAE, potentially reducing their ability to promote M-cell maturation. Our study demonstrates that ageing dramatically impedes the functional maturation of M cells, revealing an important ageing-related defect in the mucosal immune system's ability to sample lumenal antigens
Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium
The transcytosis of antigens across the gut epithelium by microfold cells (M cells) is important for the induction of efficient immune responses to some mucosal antigens in Peyer’s patches. Recently, substantial progress has been made in our understanding of the factors that influence the development and function of M cells. This review highlights these important advances, with particular emphasis on: the host genes which control the functional maturation of M cells; how this knowledge has led to the rapid advance in our understanding of M-cell biology in the steady-state and during aging; molecules expressed on M cells which appear to be used as “immunosurveillance” receptors to sample pathogenic microorganisms in the gut; how certain pathogens appear to exploit M cells to infect the host; and finally how this knowledge has been used to specifically target antigens to M cells to attempt to improve the efficacy of mucosal vaccines
Determining factors of physical activity and sedentary behaviour in university students during the COVID-19 pandemic: a longitudinal study
Introduction: Historically, university students demonstrate poor movement behaviours that could negatively impact current and future health. Recent literature has focused on identifying determinants of physical activity (PA) and sedentary behaviour (SB) in this population to inform the development of intervention strategies. However, the COVID-19 pandemic substantially restricted movement behaviours in this population, meaning findings of previous research may no longer be applicable within the current societal context. The present study explored the longitudinal relationships between pre-pandemic psychological, behavioural and anthropometric factors, and the movement behaviours of UK university students nine months following the outbreak of COVID-19.
Methods: Mental wellbeing (MWB), perceived stress (PS), body mass index (BMI), SB, and PA were assessed using an online self-report survey in 255 students prior to (October 2019) and nine months following (October 2020) the first confirmed case of COVID-19 in the UK. Path analysis was utilised to test relationships between pre-COVID mental wellbeing, perceived stress and BMI, and movement behaviours during the pandemic.
Results: The fit of the path analysis model was good (χ2 = 0.01; CMIN = 0.10, CFI = 1.00, RMSEA = 0.00). Pre-covid MWB and PS positively influenced PA (β = 0.29; β = 0.24; P < 0.01) but not SB (β = -0.10; β = 0.00; P = 0.79) during the pandemic. Additionally, pre-pandemic SB and PA positively influenced SB and PA during the pandemic respectively (SB: β = 0.26; P < 0.01) (PA: β = 0.55; P < 0.01). Pre-pandemic BMI did not influence any measured variable during the pandemic (PA: β = 0.03 and P = 0.29; SB: β = 0.06 and P = 0.56), and there was no mediating effect of PA on SB during the pandemic (β = -0.26; P = 0.14).
Conclusion: These findings indicate that pre-covid mental health and movement behaviours had a direct positive influence on PA during the pandemic, but not SB. This longitudinal study demonstrates the influence that prior psychological and behavioural factors have in determining university students’ response to periods of elevated stress and uncertainty, furthering our understanding of determinants of health-related behaviours in students
Macrophage exosomes induce placental inflammatory cytokines: a novel mode of maternal-placental messaging
During pregnancy, the placenta forms the interface between mother and fetus. Highly controlled regulation of trans-placental trafficking is therefore essential for the healthy development of the growing fetus. Extracellular vesicle-mediated transfer of protein and nucleic acids from the human placenta into the maternal circulation is well documented; the possibility that this trafficking is bi-directional has not yet been explored but could affect placental function and impact on the fetus. We hypothesized that the ability of the placenta to respond to maternal inflammatory signals is mediated by the interaction of maternal immune cell exosomes with placental trophoblast. Utilising the BeWo cell line and whole placental explants, we demonstrated that the human placenta internalizes macrophage-derived exosomes in a time- and dose-dependent manner. This uptake was via clathrin-dependent endocytosis. Furthermore, macrophage exosomes induced production of proinflammatory cytokines by the placenta. Taken together, our data demonstrates that exosomes are actively transported into the human placenta and that exosomes from activated immune cells modulate placental cytokine production. This represents a novel mechanism by which immune cells can signal to the placental unit, potentially facilitating responses to maternal inflammation and infection, and thereby preventing harm to the fetus
NDE Applications of Radio Wave Emission from Stress and Fracture
It is well-known [1], [2] that when materials are fractured, substantial local electric fields are generated. These fields are capable of accelerating charged particles from the nascent interfaces, giving rise to a class of phenomena known as “exo-emission” or “fracto-emission”. The released “exo-particles”, consisting of electrons, ions, and charged clusters or fragments, can be collected and analyzed directly. Usually, such experiments are performed under conditions of high or ultra-high vacuum. This type of particle emission has been extensively studied previously, most notably by Dickinson and his co-workers [2] — [7]. Except for previous studies of fracturing rock, performed in connection with early-warning detection of earthquakes [8], [9], and the work of Dickinson, little has been done to characterize the radio wave emission that attends material fractures. Furthermore, no previous studies of radio wave emission from the elastically or plastically strained materials have been reported. Early qualitative studies of the visible light and radio wave emission from delaminating layers of adhesively bonded polymers and metals were reported by Derjagun and his co-workers. Emission during deformation suggests itself as a possible method for diagnosing the state of dynamic material strain in situations where contact methods are not feasible or are undesirable. Examples of such potential applications are too numerous to delineate here; they include the detection of high speed particle impacts on spacecraft structures, dynamic test of radioactive, extremely hot or cold structures, and others. We also note that for the elucidation of the detailed mechanism of fracture, radio-wave emission may have advantages over other methods since, unlike acoustic or ultrasonic methods, the speed of propagation of the detected signal is much greater than the speed of the propagating crack-front in the material, so little or no deconvolution is required.</p
Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.
Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability
Neuroelectric Evidence for Cognitive Association Formation: An Event-Related Potential Investigation
Although many types of learning require associations to be formed, little is known about the brain mechanisms engaged in association formation. In the present study, we measured event-related potentials (ERPs) while participants studied pairs of semantically related words, with each word of a pair presented sequentially. To narrow in on the associative component of the signal, the ERP difference between the first and second words of a pair (Word2-Word1) was derived separately for subsequently recalled and subsequently not-recalled pairs. When the resulting difference waveforms were contrasted, a parietal positivity was observed for subsequently recalled pairs around 460 ms after the word presentation onset, followed by a positive slow wave that lasted until around 845 ms. Together these results suggest that associations formed between semantically related words are correlated with a specific neural signature that is reflected in scalp recordings over the parietal region
Nocodazole Treatment Decreases Expression of Pluripotency Markers Nanog and Oct4 in Human Embryonic Stem Cells
Nocodazole is a known destabiliser of microtubule dynamics and arrests cell-cycle at the G2/M phase. In the context of the human embryonic stem cell (hESC) it is important to understand how this arrest influences the pluripotency of cells. Here we report for the first time the changes in the expression of transcription markers Nanog and Oct4 as well as SSEA-3 and SSEA-4 in human embryonic cells after their treatment with nocodazole. Multivariate permeabilised-cell flow cytometry was applied for characterising the expression of Nanog and Oct4 during different cell cycle phases. Among untreated hESC we detected Nanog-expressing cells, which also expressed Oct4, SSEA-3 and SSEA-4. We also found another population expressing SSEA-4, but without Nanog, Oct4 and SSEA-3 expression. Nocodazole treatment resulted in a decrease of cell population positive for all four markers Nanog, Oct4, SSEA-3, SSEA-4. Nocodazole-mediated cell-cycle arrest was accompanied by higher rate of apoptosis and upregulation of p53. Twenty-four hours after the release from nocodazole block, the cell cycle of hESC normalised, but no increase in the expression of transcription markers Nanog and Oct4 was detected. In addition, the presence of ROCK-2 inhibitor Y-27632 in the medium had no effect on increasing the expression of pluripotency markers Nanog and Oct4 or decreasing apoptosis or the level of p53. The expression of SSEA-3 and SSEA-4 increased in Nanog-positive cells after wash-out of nocodazole in the presence and in the absence of Y-27632. Our data show that in hESC nocodazole reversible blocks cell cycle, which is accompanied by irreversible loss of expression of pluripotency markers Nanog and Oct4
- …
