32 research outputs found

    Unitarity and Interfering Resonances in pipi Scattering and in Pion Production piN->pipiN

    Get PDF
    Additivity of Breit-Wigner phases has been proposed to describe interfering resonances in partial waves in ππ\pi\pi scattering. This assumption leads to an expression for partial wave amplitudes that involves products of Breit-Wigner amplitudes. We show that this expression is equivalent to a coherent sum of Breit-Wigner amplitudes with specific complex coefficients which depend on the resonance parameters of all contributing resonances. We use analyticity of ππ\pi\pi partial wave amplitudes to show that they must have the form of a coherent sum of Breit-Wigner amplitudes with complex coefficients and a complex coherent background. The assumption of additivity of Breit-Wigner phases restricts the partial waves to analytical functions with very specific form of residues of Breit-Wigner poles. We argue that the general form provided by the analyticity is more appropriate in fits to data to determine resonance parameters. The partial wave unitarity can be imposed using the modern methods of constrained optimization. We discuss unitarity and the production amplitudes in πN→ππN\pi N\to\pi\pi N and use analyticity in the dipion mass variable to justify the common practice of writing the production amplitudes as a coherent sum of Breit-Wigner amplitudes with free complex coefficients and a complex coherent background in fits to mass spectra with interfering resonances.Comment: 31 page

    Demonstration of Photon Coupling in Dual Multiple-Quantum-Well Solar Cells

    Full text link
    Multiple-quantum-well (MQW) top cells can enhance the performance of multi-junction solar cells since the absorption edge of top and middle subcells can be tuned with the MQWs to maximize the efficiency. The radiative dominance of MQW top cells can enhance photon coupling, which can potentially reduce the spectral sensitivity of the device and, thus, raise the energy harvest. We present experimental results on photon coupling in dual-junction cells with GaInP top cells containing GaInAsP quantum wells along with theoretical calculation based on a detailed balance model. It is observed that at high concentration, approximately 50% of the dark current of an MQW top cell is transferred to the photocurrent of the cell in the bottom, which is much higher than any previously reported values.Lee, K.; Barnham, K.; Connolly, JP.; Browne, B.; Airey, R.; Roberts, J.; Fuhrer, M.... (2012). Demonstration of Photon Coupling in Dual Multiple-Quantum-Well Solar Cells. IEEE Journal of Photovoltaics. 2(1):68-74. doi:10.1109/JPHOTOV.2011.2177444S68742
    corecore