18 research outputs found

    Compact-2D FDTD for Waveguides Including Materials with Negative Dielectric Permittivity, Magnetic Permeability and Refractive Index

    Get PDF
    An efficient compact-2D finite-difference time-domain method is presented for the numerical analysis of guided modes in waveguides that may include negative dielectric permittivity, negative magnetic permeability and negative refractive index materials. Both complex variable and real variable methods are given. The method is demonstrated for the analysis of channel-plasmon-polariton guided modes in triangular groves on a metal surface. The presented method can be used for a range of waveguide problems that were previously unsolvable analytically, due to complex geometries, or numerically, due to computational requirements of conventional three-dimensional finite-difference time-domain methods. A 3-dimensional finite-difference time-domain algorithm that also allows analysis in the presence of bound or free electric and equivalent magnetic charges is presented and an example negative refraction demonstrates the method

    Prophenoloxidase from Pieris rapae: gene cloning, activity, and transcription in response to venom/calyx fluid from the endoparasitoid wasp Cotesia glomerata *

    No full text
    Prophenoloxidase (PPO) plays an important role in melanization, necessary for defense against intruding parasitoids. Parasitoids have evolved to inject maternal virulence factors into the host hemocoel to suppress hemolymph melanization for the successful development of their progeny. In this study, the full-length complementary DNA (cDNA) of a Pieris rapae PPO was cloned. Its cDNA contained a 2 076-base pair (bp) open reading frame (ORF) encoding 691 amino acids (aa). Two putative copper-binding sites, a proteolytic activation site, three conserved hemocyanin domains, and a thiol ester motif were found in the deduced amino acid sequence. According to both multiple alignment and phylogenetic analysis, P. rapae PPO gene cloned here is a member of the lepidopteran PPO-2 family. Injection of Cotesia glomerata venom or calyx fluid resulted in reduction of P. rapae hemolymph phenoloxidase activity, demonstrating the ability to inhibit the host′s melanization. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) showed that transcripts of P. rapae PPO-2 in the haemocytes from larvae had not significantly changed following venom injection, suggesting that the regulation of PPO messenger RNA (mRNA) expression by venom was not employed by C. glomerata to cause failure of melanization in parasitized host. While decreased P. rapae PPO-2 gene expression was observed in the haemocytes after calyx fluid injection, no detectable transcriptional change was induced by parasitization, indicating that transcriptional down-regulation of PPO by calyx fluid might play a minor role involved in inhibiting the host′s melanization

    Proteome changes in the plasma of Pieris rapae parasitized by the endoparasitoid wasp Pteromalus puparum *

    No full text
    Parasitism by the endoparasitoid wasp Pteromalus puparum causes alterations in the plasma proteins of Pieris rapae. Analysis of plasma proteins using a proteomic approach showed that seven proteins were differentially expressed in the host pupae after 24-h parasitism. They were masquerade-like serine proteinase homolog (MSPH), enolase (Eno), bilin-binding protein (BBP), imaginal disc growth factor (IDGF), ornithine decarboxylase (ODC), cellular retinoic acid binding protein (CRABP), and one unknown function protein. The full length cDNA sequences of MSPH, Eno, and BBP were successfully cloned using rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis indicated that the transcript levels of MSPH and BBP in the fat bodies of host pupae were inducible in response to the parasitism and their variations were consistent with translational changes of these genes after parasitism, while the transcript levels of Eno and IDGF were not affected by parasitism. This study will contribute to the better understanding of the molecular bases of parasitoid-induced host alterations associated with innate immune responses, detoxification, and energy metabolism
    corecore