85 research outputs found

    Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Get PDF
    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results

    Distribution of Major Health Risks: Findings from the Global Burden of Disease Study

    Get PDF
    BACKGROUND: Most analyses of risks to health focus on the total burden of their aggregate effects. The distribution of risk-factor-attributable disease burden, for example by age or exposure level, can inform the selection and targeting of specific interventions and programs, and increase cost-effectiveness. METHODS AND FINDINGS: For 26 selected risk factors, expert working groups conducted comprehensive reviews of data on risk-factor exposure and hazard for 14 epidemiological subregions of the world, by age and sex. Age-sex-subregion-population attributable fractions were estimated and applied to the mortality and burden of disease estimates from the World Health Organization Global Burden of Disease database. Where possible, exposure levels were assessed as continuous measures, or as multiple categories. The proportion of risk-factor-attributable burden in different population subgroups, defined by age, sex, and exposure level, was estimated. For major cardiovascular risk factors (blood pressure, cholesterol, tobacco use, fruit and vegetable intake, body mass index, and physical inactivity) 43%–61% of attributable disease burden occurred between the ages of 15 and 59 y, and 87% of alcohol-attributable burden occurred in this age group. Most of the disease burden for continuous risks occurred in those with only moderately raised levels, not among those with levels above commonly used cut-points, such as those with hypertension or obesity. Of all disease burden attributable to being underweight during childhood, 55% occurred among children 1–3 standard deviations below the reference population median, and the remainder occurred among severely malnourished children, who were three or more standard deviations below median. CONCLUSIONS: Many major global risks are widely spread in a population, rather than restricted to a minority. Population-based strategies that seek to shift the whole distribution of risk factors often have the potential to produce substantial reductions in disease burden

    Particles-vortex interactions and flow visualization in He4

    Full text link
    Recent experiments have demonstrated a remarkable progress in implementing and use of the Particle Image Velocimetry (PIV) and particle tracking techniques for the study of turbulence in He4. However, an interpretation of the experimental data in the superfluid phase requires understanding how the motion of tracer particles is affected by the two components, the viscous normal fluid and the inviscid superfluid. Of a particular importance is the problem of particle interactions with quantized vortex lines which may not only strongly affect the particle motion, but, under certain conditions, may even trap particles on quantized vortex cores. The article reviews recent theoretical, numerical, and experimental results in this rapidly developing area of research, putting critically together recent results, and solving apparent inconsistencies. Also discussed is a closely related technique of detection of quantized vortices negative ion bubbles in He4.Comment: To appear in the J Low Temperature Physic

    Customer emotions in service failure and recovery encounters

    Get PDF
    Emotions play a significant role in the workplace, and considerable attention has been given to the study of employee emotions. Customers also play a central function in organizations, but much less is known about customer emotions. This chapter reviews the growing literature on customer emotions in employee–customer interfaces with a focus on service failure and recovery encounters, where emotions are heightened. It highlights emerging themes and key findings, addresses the measurement, modeling, and management of customer emotions, and identifies future research streams. Attention is given to emotional contagion, relationships between affective and cognitive processes, customer anger, customer rage, and individual differences

    Search for Tensor, Vector, and Scalar Polarizations in the Stochastic Gravitational-Wave Background

    Get PDF
    The detection of gravitational waves with Advanced LIGO and Advanced Virgo has enabled novel tests of general relativity, including direct study of the polarization of gravitational waves. While general relativity allows for only two tensor gravitational-wave polarizations, general metric theories can additionally predict two vector and two scalar polarizations. The polarization of gravitational waves is encoded in the spectral shape of the stochastic gravitational-wave background, formed by the superposition of cosmological and individually unresolved astrophysical sources. Using data recorded by Advanced LIGO during its first observing run, we search for a stochastic background of generically polarized gravitational waves. We find no evidence for a background of any polarization, and place the first direct bounds on the contributions of vector and scalar polarizations to the stochastic background. Under log-uniform priors for the energy in each polarization, we limit the energy densities of tensor, vector, and scalar modes at 95% credibility to Ω0T<5.58×10-8, Ω0V<6.35×10-8, and Ω0S<1.08×10-7 at a reference frequency f0=25 Hz. © 2018 American Physical Society

    On the progenitor of binary neutron star merger GW170817

    Get PDF
    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ∼40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ∼2 kpc away from the galaxy's center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy's star formation history, provided the stellar populations are older than 1 Gyr

    Testing the physical oceanographic implications of the suggested sudden Black Sea infill 8400 years ago

    Get PDF
    We apply a shock-capturing numerical model based on the single-layer shallow water equations to an idealized geometry of the Black Sea and the Sea of Marmara in order to test the implications of a suggested sudden Black Sea infill 8400 years ago. The model resolves the two-dimensional flow upstream and downstream of the hydraulic jump provoked by the cascade of water from the Sea of Marmara into the Black Sea, which would occur during a sudden Black Sea infill. The modeled flow downstream of the hydraulic jump in the Black Sea would consist of a jet that is in part constrained by bathymetric contours. Guided by the Bosporus Canyon, the modeled jet reaches depths of up to 2000 m and could explain the origin of the sediment waves observed at this depth. At a late stage of the infill the modeled jet is attached to the coast and might account for the course of a submerged channel at the mouth of the Bosporus. The preservation of continuous barrier-washover-lagoonal fill systems occurring on the Black Sea shelf is, however, not easily reconcilable with the large flows over the southwest Black Sea shelf predicted by the model. Intensified flow in the upstream basin (Sea of Marmara) is restricted to the immediate vicinity of the Bosporus, suggesting that a sudden reconnection need not have disturbed sediments in the wider Sea of Marmara

    Spectral differences in the underwater light regime caused by sediment types in New Zealand estuaries: Implications for seagrass photosynthesis

    No full text
    The underwater light regime is fundamental to the ecological health of aquatic systems because it is a limiting factor for photosynthesis in marine plants such as seagrasses. Although seagrass meadows are a key component of coastal systems, their survival has been threatened by increased turbidity levels, both from resuspension of marine sediments and input of terrestrial material. The objective of this study was to investigate how marine (typically grey/white in colour) and terrestrial (typically more yellow-orange in colour with finer texture) sediments affect underwater light quality. Two experimental systems were used: (1) a large outdoor tank and (2) laboratory controlled small sampling container, using natural terrestrial and marine sediment samples (with different colours and grain sizes) from New Zealand. In the tank experiments, high concentrations of sediment reduced transmittance considerably, particularly below 450 nm. Since seagrasses absorb light optimally at wavelengths < 500 nm, as well as between 650 nm and 700 nm, the photosynthetic capacity will be less efficient with pigment absorption occurring mainly at the 650–700 nm wavebands. The difference in colour (white and grey) between marine sediments with the same grain sizes was tested in the laboratory. White sediment resulted in lower transmittance at the same concentration compared with grey sediments; concentration differences had more impact on the spectral distribution of light for white sediments. Within the ranges tested, sediment concentration contributed most to changes in overall light transmittance, with grain size being slightly less important. Sediment colour was important in changing the distribution of light, with orange and white sediments increasing attenuation of shorter wavelengths, which are most needed for seagrass photosynthesis. Our results emphasise the importance of quantifying the spectral changes to underwater light regimes in managing estuaries that are subjected to regular catchment runoff

    Digital image processing

    No full text
    corecore