9 research outputs found

    Neutron star cooling: Theoretical aspects and observational constraints

    Full text link
    The cooling theory of isolated neutron stars is reviewed. The main cooling regulators are discussed, first of all, operation of direct Urca process (or similar processes in exotic phases of dense matter) and superfluidity in stellar interiors. The prospects to constrain gross parameters of supranuclear matter in neutron-star interiors by confronting cooling theory with observations of isolated neutron stars are outlined. A related problem of thermal states of transiently accreting neutron stars with deep crustal heating of accreted matter is discussed in application to soft X-ray transients.Comment: 10 pages, 3 figures, Proceedings of the 34th COSPAR Scientific Assembly (Adv. Sp. Res., accepted

    Neutrino Cooling of Neutron Stars. Medium effects

    Get PDF
    This review demonstrates that neutrino emission from dense hadronic component in neutron stars is subject of strong modifications due to collective effects in the nuclear matter. With the most important in-medium processes incorporated in the cooling code an overall agreement with available soft X ray data can be easily achieved. With these findings so called "standard" and "non-standard" cooling scenarios are replaced by one general "nuclear medium cooling scenario" which relates slow and rapid neutron star coolings to the star masses (interior densities). In-medium effects take important part also at early hot stage of neutron star evolution decreasing the neutrino opacity for less massive and increasing for more massive neutron stars. A formalism for calculation of neutrino radiation from nuclear matter is presented that treats on equal footing one-nucleon and multiple-nucleon processes as well as reactions with resonance bosons and condensates. Cooling history of neutron stars with quark cores is also discussed.Comment: To be published in "Physics of Neutron Star Interiors", Eds. D. Blaschke, N.K. Glendenning, A. Sedrakian, Springer, Heidelberg (2001

    Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons

    Get PDF
    Pulsars with high spin-down power produce relativistic winds radiating a non-negligible fraction of this power over the whole electromagnetic range from radio to gamma-rays in the pulsar wind nebulae (PWNe). The rest of the power is dissipated in the interactions of the PWNe with the ambient interstellar medium (ISM). Some of the PWNe are moving relative to the ambient ISM with supersonic speeds producing bow shocks. In this case, the ultrarelativistic particles accelerated at the termination surface of the pulsar wind may undergo reacceleration in the converging flow system formed by the plasma outflowing from the wind termination shock and the plasma inflowing from the bow shock. The presence of magnetic perturbations in the flow, produced by instabilities induced by the accelerated particles themselves, is essential for the process to work. A generic outcome of this type of reacceleration is the creation of particle distributions with very hard spectra, such as are indeed required to explain the observed spectra of synchrotron radiation with photon indices Γ≲ 1.5. The presence of this hard spectral component is specific to PWNe with bow shocks (BSPWNe). The accelerated particles, mainly electrons and positrons, may end up containing a substantial fraction of the shock ram pressure. In addition, for typical ISM and pulsar parameters, the e+ released by these systems in the Galaxy are numerous enough to contribute a substantial fraction of the positrons detected as cosmic ray (CR) particles above few tens of GeV and up to several hundred GeV. The escape of ultrarelativistic particles from a BSPWN—and hence, its appearance in the far-UV and X-ray bands—is determined by the relative directions of the interstellar magnetic field, the velocity of the astrosphere and the pulsar rotation axis. In this respect we review the observed appearance and multiwavelength spectra of three different types of BSPWNe: PSR J0437-4715, the Guitar and Lighthouse nebulae, and Vela-like objects. We argue that high resolution imaging of such objects provides unique information both on pulsar winds and on the ISM. We discuss the interpretation of imaging observations in the context of the model outlined above and estimate the BSPWN contribution to the positron flux observed at the Earth

    Evolution of a neutron star from its birth to old age

    No full text
    Abstract. The main stages in the evolution of a neutron star, from its birth as a proto-neutron star, to its old age as a cold, catalyzed configuration, are described. A proto-neutron star is formed in the aftermath of a successful supernova explosion and its evolution is dominated by neutrino diffusion. Its neutrino signal is a valuable diagnostic of its internal structure and composition. During its transformation from a hot, leptonrich to a cold, catalyzed remnant, the possibility exists that it can collapse into a black hole, which abruptly terminates neutrino emissions. The essential microphysics, reviewed herein, that controls its evolution are the equation of state of dense matter and its associated neutrino opacities. Several simulations of the proto-neutron star evolution, involving different assumptions about the composition of dense matter, are described. After its evolution into a nearly isothermal neutron star a hundred or so years after its birth, it may be observable through its thermal emission in X-rays during its life in the next million years. Its surface temperature will depend upon the rapidity of neutrino emission processes in its core, which depends on the composition of dense matter and whether or not its constituents exhibit superfluidity and superconductivity. Observations of thermal emission offer the best hope of a determination of the radius of a neutron star. The implications for the underlying dense matter equation of state of an accurate radius determination are explored.

    Pulsar Wind Nebulae with Bow Shocks: Non-thermal Radiation and Cosmic Ray Leptons

    No full text

    Pulsar-Wind Nebulae

    No full text
    corecore