130 research outputs found

    Current cosmological bounds on neutrino masses and relativistic relics

    Get PDF
    We combine the most recent observations of large-scale structure (2dF and SDSS galaxy surveys) and cosmic microwave anisotropies (WMAP and ACBAR) to put constraints on flat cosmological models where the number of massive neutrinos and of massless relativistic relics are both left arbitrary. We discuss the impact of each dataset and of various priors on our bounds. For the standard case of three thermalized neutrinos, we find an upper bound on the total neutrino mass sum m_nu < 1.0 (resp. 0.6) eV (at 2sigma), using only CMB and LSS data (resp. including priors from supernovae data and the HST Key Project), a bound that is quite insensitive to the splitting of the total mass between the three species. When the total number of neutrinos or relativistic relics N_eff is left free, the upper bound on sum m_nu (at 2sigma, including all priors) ranges from 1.0 to 1.5 eV depending on the mass splitting. We provide an explanation of the parameter degeneracy that allows larger values of the masses when N_eff increases. Finally, we show that the limit on the total neutrino mass is not significantly modified in the presence of primordial gravitational waves, because current data provide a clear distinction between the corresponding effects.Comment: 13 pages, 6 figure

    Optical activity of neutrinos and antineutrinos

    Full text link
    Using the one-loop helicity amplitudes for low-energy νγνγ\nu\gamma\to\nu\gamma and νˉγνˉγ\bar\nu\gamma\to\bar\nu\gamma scattering in the standard model with massless neutrinos, we study the optical activity of a sea of neutrinos and antineutrinos. In particular, we estimate the values of the index of refraction and rotary power of this medium in the absence of dispersion.Comment: Additional reference

    Remarks on the Cosmic Density of Degenerate Neutrinos

    Get PDF
    We re-investigate the evolution of the strongly degenerate neutrinos in the early universe. With the larger degeneracy, the neutrino number freezes at higher temperatures because the neutrino annihilation rate decreases. We consider very large degeneracy so large that the neutrino number freezes before events in which the particle degrees of freedom in the universe decrease (e.g. the muon annihilation and the quark-hadron phase transition). In such a case, the degeneracy by the time of nucleosynthesis becomes smaller than the initial degeneracy. We calculate how much it decreases from the initial value on the basis of the conservation of the neutrino number and the total entropy. We found a large drop in the degeneracy but it is not large enough to affect the current constraints on the neutrino degeneracy from BBN and CMBR.Comment: 14 pages, 5 figure

    Lightest sterile neutrino abundance within the nuMSM

    Get PDF
    We determine the abundance of the lightest (dark matter) sterile neutrinos created in the Early Universe due to active-sterile neutrino transitions from the thermal plasma. Our starting point is the field-theoretic formula for the sterile neutrino production rate, derived in our previous work [JHEP 06(2006)053], which allows to systematically incorporate all relevant effects, and also to analyse various hadronic uncertainties. Our numerical results differ moderately from previous computations in the literature, and lead to an absolute upper bound on the mixing angles of the dark matter sterile neutrino. Comparing this bound with existing astrophysical X-ray constraints, we find that the Dodelson-Widrow scenario, which proposes sterile neutrinos generated by active-sterile neutrino transitions to be the sole source of dark matter, is only possible for sterile neutrino masses lighter than 3.5 keV (6 keV if all hadronic uncertainties are pushed in one direction and the most stringent X-ray bounds are relaxed by a factor of two). This upper bound may conflict with a lower bound from structure formation, but a definitive conclusion necessitates numerical simulations with the non-equilibrium momentum distribution function that we derive. If other production mechanisms are also operative, no upper bound on the sterile neutrino mass can be established.Comment: 34 pages. v2: clarifications and a reference added; published version. v3: erratum appende

    Do many-particle neutrino interactions cause a novel coherent effect?

    Full text link
    We investigate whether coherent flavor conversion of neutrinos in a neutrino background is substantially modified by many-body effects, with respect to the conventional one-particle effective description. We study the evolution of a system of interacting neutrino plane waves in a box. Using its equivalence to a system of spins, we determine the character of its behavior completely analytically. We find that, if the neutrinos are initially in flavor eigenstates, no coherent flavor conversion is realized, in agreement with the effective one-particle description. This result does not depend on the size of the neutrino wavepackets and therefore has a general character. The validity of the several important applications of the one-particle formalism is thus confirmed.Comment: 25 pages, 1 figur

    Cosmological and astrophysical limits on brane fluctuations

    Get PDF
    We consider a general brane-world model parametrized by the brane tension scale ff and the branon mass MM. For low tension compared to the fundamental gravitational scale, we calculate the relic branon abundance and its contribution to the cosmological dark matter. We compare this result with the current observational limits on the total and hot dark matter energy densities and derive the corresponding bounds on ff and MM. Using the nucleosynthesis bounds on the number of relativistic species, we also set a limit on the number of light branons in terms of the brane tension. Finally, we estimate the bounds coming from the energy loss rate in supernovae explosions due to massive branon emission.Comment: 26 pages, 6 figures, LaTeX. Final version with minor corrections. To appear in Phys. Rev.

    Big Bang Nucleosynthesis with Gaussian Inhomogeneous Neutrino Degeneracy

    Full text link
    We consider the effect of inhomogeneous neutrino degeneracy on Big Bang nucleosynthesis for the case where the distribution of neutrino chemical potentials is given by a Gaussian. The chemical potential fluctuations are taken to be isocurvature, so that only inhomogeneities in the electron chemical potential are relevant. Then the final element abundances are a function only of the baryon-photon ratio η\eta, the effective number of additional neutrinos ΔNν\Delta N_\nu, the mean electron neutrino degeneracy parameter ξˉ\bar \xi, and the rms fluctuation of the degeneracy parameter, σξ\sigma_\xi. We find that for fixed η\eta, ΔNν\Delta N_\nu, and ξˉ\bar \xi, the abundances of helium-4, deuterium, and lithium-7 are, in general, increasing functions of σξ\sigma_\xi. Hence, the effect of adding a Gaussian distribution for the electron neutrino degeneracy parameter is to decrease the allowed range for η\eta. We show that this result can be generalized to a wide variety of distributions for ξ\xi.Comment: 9 pages, 3 figures, added discussion of neutrino oscillations, altered presentation of figure

    Neutrino flavor conversion in a neutrino background: single- versus multi-particle description

    Full text link
    In the early Universe, or near a supernova core, neutrino flavor evolution may be affected by coherent neutrino-neutrino scattering. We develop a microscopic picture of this phenomenon. We show that coherent scattering does not lead to the formation of entangled states in the neutrino ensemble and therefore the evolution of the system can always be described by a set of one-particle equations. We also show that the previously accepted formalism overcounts the neutrino interaction energy; the correct one-particle evolution equations for both active-active and active-sterile oscillations contain additional terms. These additional terms modify the index of refraction of the neutrino medium, but have no effect on oscillation physics.Comment: 12 pages, 3 figures, minor typos correcte

    Cosmological Implications of Neutrinos

    Get PDF
    The lectures describe several cosmological effects produced by neutrinos. Upper and lower cosmological limits on neutrino mass are derived. The role that neutrinos may play in formation of large scale structure of the universe is described and neutrino mass limits are presented. Effects of neutrinos on cosmological background radiation and on big bang nucleosynthesis are discussed. Limits on the number of neutrino flavors and mass/mixing are given.Comment: 41 page, 7 figures; lectures presented at ITEP Winter School, February, 2002; to be published in the Proceeding
    corecore