15 research outputs found

    Deleterious variants in CRLS1 lead to cardiolipin deficiency and cause an autosomal recessive multi-system mitochondrial disease

    No full text
    Mitochondrial diseases are a group of inherited diseases with highly varied and complex clinical presentations. Here, we report four individuals, including two siblings, affected by a progressive mitochondrial encephalopathy with biallelic variants in the cardiolipin biosynthesis gene CRLS1. Three affected individuals had a similar infantile presentation comprising progressive encephalopathy, bull's eye maculopathy, auditory neuropathy, diabetes insipidus, autonomic instability, cardiac defects and early death. The fourth affected individual presented with chronic encephalopathy with neurodevelopmental regression, congenital nystagmus with decreased vision, sensorineural hearing loss, failure to thrive and acquired microcephaly. Using patient-derived fibroblasts, we characterized cardiolipin synthase 1 (CRLS1) dysfunction that impaired mitochondrial morphology and biogenesis, providing functional evidence that the CRLS1 variants cause mitochondrial disease. Lipid profiling in fibroblasts from two patients further confirmed the functional defect demonstrating reduced cardiolipin levels, altered acyl-chain composition and significantly increased levels of phosphatidylglycerol, the substrate of CRLS1. Proteomic profiling of patient cells and mouse Crls1 knockout cell lines identified both endoplasmic reticular and mitochondrial stress responses, and key features that distinguish between varying degrees of cardiolipin insufficiency. These findings support that deleterious variants in CRLS1 cause an autosomal recessive mitochondrial disease, presenting as a severe encephalopathy with multi-systemic involvement. Furthermore, we identify key signatures in cardiolipin and proteome profiles across various degrees of cardiolipin loss, facilitating the use of omics technologies to guide future diagnosis of mitochondrial diseases.Genome Instability and Cance

    Deleterious variants in CRLS1 lead to cardiolipin deficiency and cause an autosomal recessive multi-system mitochondrial disease

    Get PDF
    Mitochondrial diseases are a group of inherited diseases with highly varied and complex clinical presentations. Here, we report four individuals, including two siblings, affected by a progressive mitochondrial encephalopathy with biallelic variants in the cardiolipin biosynthesis gene CRLS1. Three affected individuals had a similar infantile presentation comprising progressive encephalopathy, bull's eye maculopathy, auditory neuropathy, diabetes insipidus, autonomic instability, cardiac defects and early death. The fourth affected individual presented with chronic encephalopathy with neurodevelopmental regression, congenital nystagmus with decreased vision, sensorineural hearing loss, failure to thrive and acquired microcephaly. Using patient-derived fibroblasts, we characterized cardiolipin synthase 1 (CRLS1) dysfunction that impaired mitochondrial morphology and biogenesis, providing functional evidence that the CRLS1 variants cause mitochondrial disease. Lipid profiling in fibroblasts from two patients further confirmed the functional defect demonstrating reduced cardiolipin levels, altered acyl-chain composition and significantly increased levels of phosphatidylglycerol, the substrate of CRLS1. Proteomic profiling of patient cells and mouse Crls1 knockout cell lines identified both endoplasmic reticular and mitochondrial stress responses, and key features that distinguish between varying degrees of cardiolipin insufficiency. These findings support that deleterious variants in CRLS1 cause an autosomal recessive mitochondrial disease, presenting as a severe encephalopathy with multi-systemic involvement. Furthermore, we identify key signatures in cardiolipin and proteome profiles across various degrees of cardiolipin loss, facilitating the use of omics technologies to guide future diagnosis of mitochondrial diseases

    NAD(P)HX dehydratase (NAXD) deficiency: a novel neurodegenerative disorder exacerbated by febrile illnesses.

    Get PDF
    Physical stress, including high temperatures, may damage the central metabolic nicotinamide nucleotide cofactors [NAD(P)H], generating toxic derivatives [NAD(P)HX]. The highly conserved enzyme NAD(P)HX dehydratase (NAXD) is essential for intracellular repair of NAD(P)HX. Here we present a series of infants and children who suffered episodes of febrile illness-induced neurodegeneration or cardiac failure and early death. Whole-exome or whole-genome sequencing identified recessive NAXD variants in each case. Variants were predicted to be potentially deleterious through in silico analysis. Reverse-transcription PCR confirmed altered splicing in one case. Subject fibroblasts showed highly elevated concentrations of the damaged cofactors S-NADHX, R-NADHX and cyclic NADHX. NADHX accumulation was abrogated by lentiviral transduction of subject cells with wild-type NAXD. Subject fibroblasts and muscle biopsies showed impaired mitochondrial function, higher sensitivity to metabolic stress in media containing galactose and azide, but not glucose, and decreased mitochondrial reactive oxygen species production. Recombinant NAXD protein harbouring two missense variants leading to the amino acid changes p.(Gly63Ser) and p.(Arg608Cys) were thermolabile and showed a decrease in Vmax and increase in KM for the ATP-dependent NADHX dehydratase activity. This is the first study to identify pathogenic variants in NAXD and to link deficient NADHX repair with mitochondrial dysfunction. The results show that NAXD deficiency can be classified as a metabolite repair disorder in which accumulation of damaged metabolites likely triggers devastating effects in tissues such as the brain and the heart, eventually leading to early childhood death

    Patient Age, Sex, and Inflammatory Bowel Disease Phenotype Associate With Course of Primary Sclerosing Cholangitis

    No full text
    Background & Aims Primary sclerosing cholangitis (PSC) is an orphan hepatobiliary disorder associated with inflammatory bowel disease (IBD). We aimed to estimate the risk of disease progression based on distinct clinical phenotypes in a large international cohort of patients with PSC. Methods We performed a retrospective outcome analysis of patients diagnosed with PSC from 1980 through 2010 at 37 centers in Europe, North America, and Australia. For each patient, we collected data on sex, clinician-reported age at and date of PSC and IBD diagnoses, phenotypes of IBD and PSC, and date and indication of IBD-related surgeries. The primary and secondary endpoints were liver transplantation or death (LTD) and hepatopancreatobiliary malignancy, respectively. Cox proportional hazards models were applied to determine the effects of individual covariates on rates of clinical events, with time-to-event analysis ascertained through Kaplan-Meier estimates. Results Of the 7121 patients in the cohort, 2616 met the primary endpoint (median time to event of 14.5 years) and 721 developed hepatopancreatobiliary malignancy. The most common malignancy was cholangiocarcinoma (n = 594); patients of advanced age at diagnosis had an increased incidence compared with younger patients (incidence rate: 1.2 per 100 patient-years for patients younger than 20 years old, 6.0 per 100 patient-years for patients 21–30 years old, 9.0 per 100 patient-years for patients 31–40 years old, 14.0 per 100 patient-years for patients 41–50 years old, 15.2 per 100 patient-years for patients 51–60 years old, and 21.0 per 100 patient-years for patients older than 60 years). Of all patients with PSC studied, 65.5% were men, 89.8% had classical or large-duct disease, and 70.0% developed IBD at some point. Assessing the development of IBD as a time-dependent covariate, Crohn's disease and no IBD (both vs ulcerative colitis) were associated with a lower risk of LTD (unadjusted hazard ratio [HR], 0.62; P <.001 and HR, 0.90; P =.03, respectively) and malignancy (HR, 0.68; P =.008 and HR, 0.77; P =.004, respectively). Small-duct PSC was associated with a lower risk of LTD or malignancy compared with classic PSC (HR, 0.30 and HR, 0.15, respectively; both P <.001). Female sex was also associated with a lower risk of LTD or malignancy (HR, 0.88; P =.002 and HR, 0.68; P <.001, respectively). In multivariable analyses assessing the primary endpoint, small-duct PSC characterized a low-risk phenotype in both sexes (adjusted HR for men, 0.23; P <.001 and adjusted HR for women, 0.48; P =.003). Conversely, patients with ulcerative colitis had an increased risk of liver disease progression compared with patients with Crohn's disease (HR, 1.56; P <.001) or no IBD (HR, 1.15; P =.002). Conclusions In an analysis of data from individual patients with PSC worldwide, we found significant variation in clinical course associated with age at diagnosis, sex, and ductal and IBD subtypes. The survival estimates provided might be used to estimate risk levels for patients with PSC and select patients for clinical trials. © 2017 AGA Institut

    Long-term high fructose and saturated fat diet affects plasma fatty acid profile in rats

    No full text
    As the consumption of fructose and saturated fatty acids (FAs) has greatly increased in western diets and is linked with an increased risk of metabolic syndrome, the aim of this study was to investigate the effects of a moderate (10 weeks) and a prolonged (30 weeks) high fructose and saturated fatty acid (HFS) diet on plasma FA composition in rats. The effects of a few weeks of HFS diet had already been described, but in this paper we tried to establish whether these effects persist or if they are modified after 10 or 30 weeks. We hypothesized that the plasma FA profile would be altered between 10 and 30 weeks of the HFS diet. Rats fed with either the HFS or a standard diet were tested after 10 weeks and again after 30 weeks. After 10 weeks of feeding, HFS-fed rats developed the metabolic syndrome, as manifested by an increase in fasting insulinemia, total cholesterol and triglyceride levels, as well as by impaired glucose tolerance. Furthermore, the plasma FA profile of the HFS group showed higher proportions of monounsaturated FAs like palmitoleic acid [16:1(n-7)] and oleic acid [18:1(n-9)], whereas the proportions of some polyunsaturated n-6 FAs, such as linoleic acid [18:2(n-6)] and arachidonic acid [20:4(n-6)], were lower than those in the control group. After 30 weeks of the HFS diet, we observed changes mainly in the levels of 16:1(n-7) (decreased) and 20:4(n-6) (increased). Together, our results suggest that an HFS diet could lead to an adaptive response of the plasma FA profile over time, in association with the development of the metabolic syndrome
    corecore