95 research outputs found

    Deciphering the Emerging Complexities of Molecular Mechanisms at GWAS Loci

    Get PDF
    Genome-wide association studies (GWASs) have identified thousands of loci associated with hundreds of complex diseases and traits, and progress is being made toward elucidating the causal variants and genes underlying these associations. Functional characterization of mechanisms at GWAS loci is a multi-faceted challenge. Challenges include linkage disequilibrium and allelic heterogeneity at each locus, the noncoding nature of most loci, and the time and cost needed for experimentally evaluating the potential mechanistic contributions of genes and variants. As GWAS sample sizes increase, more loci are identified, and the complexities of individual loci emerge. Loci can consist of multiple association signals, each of which can reflect the influence of multiple variants, inseparable by association analyses. Each signal within a locus can influence the same or different target genes. Experimental studies of genes and variants can differ on the basis of cell type, cellular environment, or other context-specific variables. In this review, we describe the complexity of mechanisms at GWAS loci—including multiple signals, multiple variants, and/or multiple genes—and the implications these complexities hold for experimental study design and interpretation of GWAS mechanisms

    Functional genomics and assays of regulatory activity detect mechanisms at loci for lipid traits and coronary artery disease

    Get PDF
    Many genome-wide association studies (GWAS) have identified signals located in non-coding regions, and an increasing number of functional genomics annotations of regulatory elements and assays of regulatory activity have been used to investigate mechanisms. Genome-wide datasets that characterize chromatin structure help detect potential regulatory elements. Assays to experimentally assess candidate variants include transcriptional reporter assays, and recently, massively parallel reporter assays (MPRAs). Additionally, the effect of candidate regulatory elements and variants on gene expression and function can be evaluated using genomic editing with the CRISPR-Cas9 technology. We highlight some recent studies that employed these strategies to identify variant effects and elucidate molecular and/or biological mechanisms at GWAS loci for lipid traits and coronary artery disease

    Assessing exposure effects on gene expression

    Get PDF
    In observational genomics data sets, there is often confounding of the effect of an exposure on gene expression. To adjust for confounding when estimating the exposure effect, a common approach involves including potential confounders as covariates with the exposure in a regression model of gene expression. However, when the exposure and confounders interact to influence gene expression, the fitted regression model does not necessarily estimate the overall effect of the exposure. Using inverse probability weighting (IPW) or the parametric g-formula in these instances is straightforward to apply and yields consistent effect estimates. IPW can readily be integrated into a genomics data analysis pipeline with upstream data processing and normalization, while the g-formula can be implemented by making simple alterations to the regression model. The regression, IPW, and g-formula approaches to exposure effect estimation are compared herein using simulations; advantages and disadvantages of each approach are explored. The methods are applied to a case study estimating the effect of current smoking on gene expression in adipose tissue

    Multi-SNP mediation intersection-union test

    Get PDF
    Tens of thousands of reproducibly identified GWAS (Genome-Wide Association Studies) variants, with the vast majority falling in non-coding regions resulting in no eventual protein products, call urgently for mechanistic interpretations. Although numerous methods exist, there are few, if any methods, for simultaneously testing the mediation effects of multiple correlated SNPs via some mediator (e.g. the expression of a gene in the neighborhood) on phenotypic outcome. We propose multi-SNP mediation intersection-union test (SMUT) to fill in this methodological gap. Our extensive simulations demonstrate the validity of SMUT as well as substantial, up to 92%, power gains over alternative methods. In addition, SMUT confirmed known mediators in a real dataset of Finns for plasma adiponectin level, which were missed by many alternative methods. We believe SMUT will become a useful tool to generate mechanistic hypotheses underlying GWAS variants, facilitating functional follow-up

    Enhancer deletion and allelic effects define a regulatory molecular mechanism at the VLDLR cholesterol GWAS locus

    Get PDF
    Total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are heritable risk factors for cardiovascular disease, yet the molecular mechanisms underlying the majority of blood lipid-associated genome-wide association studies signals remain elusive. One association signal is located in intron 3 of VLDLR; rs3780181-A is a risk allele associated (P ≤ 2 × 10-9) with increased TC and LDL-C.We investigated variants, genes and mechanisms underlying this association signal.We used a functional genetic approach to show that the intronic region spanning rs3780181 exhibited 1.6-7.6-fold enhancer activity in human HepG2 hepatocyte, THP-1 monocyte and Simpson-Golabi-Behmel Syndrome (SGBS) preadipocyte cells and that the rs3780181-A risk allele showed significantly less enhancer activity compared with the G allele, consistent with the direction of an expression quantitative trait locus in liver. In addition, rs3780181 alleles showed differential binding to multiple nuclear proteins, including stronger IRF2 binding to the rs3780181 G allele.We used a CRISPR-cas9 approach to delete 475 and 663 bp of the putative enhancer element in HEK293T kidney cells; compared to expression of mock-edited cell lines, the homozygous enhancer deletion cell lines showed 1.2-fold significantly (P < 0.04) decreased expression of VLDLR, as well as 1.5-fold decreased expression of SMARCA2, located 388 kb away. Together, these results identify an enhancer of VLDLR expression and suggest that altered binding of one or more factors bound to rs3780181 alleles decreases enhancer activity and reduces at least VLDLR expression, leading to increased TC and LDL-C

    Evidence for Association between SH2B1 Gene Variants and Glycated Hemoglobin in Nondiabetic European American Young Adults: The Add Health Study

    Get PDF
    Glycated hemoglobin (HbA1c) is used to classify glycaemia and type 2 diabetes (T2D). Body mass index (BMI) is a predictor of HbA1c levels and T2D. We tested 43 established BMI and obesity loci for association with HbA1c in a nationally representative multiethnic sample of young adults from the National Longitudinal Study of Adolescent to Adult Health [Add Health: age 24–34 years; n = 5641 European Americans (EA); 1740 African Americans (AA); 1444 Hispanic Americans (HA)] without T2D, using two levels of covariate adjustment (Model 1: age, sex, smoking, and geographic region; Model 2: Model 1 covariates plus BMI). Bonferroni adjustment was made for 43 SNPs and we considered P < 0.0011 statistically significant. Means (SD) for HbA1c were 5.4% (0.3) in EA, 5.7% (0.4) in AA, and 5.5% (0.3) in HA. We observed significant evidence for association with HbA1c for two variants near SH2B1 in EA (rs4788102, P = 2.2 × 10−4; rs7359397, P = 9.8 × 10−4) for Model 1. Both results were attenuated after adjustment for BMI (rs4788102, P = 1.7 × 10−3; rs7359397, P = 4.6 × 10−3). No variant reached Bonferroni-corrected significance in AA or HA. These results suggest that SH2B1 polymorphisms are associated with HbA1c, largely independent of BMI, in EA young adults

    Genetic risk scores in the prediction of plasma glucose, impaired insulin secretion, insulin resistance and incident type 2 diabetes in the METSIM study

    Get PDF
    Aims/hypothesis: Many SNPs have been associated with glycaemic traits and type 2 diabetes, but their joint effects on glycaemic traits and the underlying mechanisms leading to hyperglycaemia over time are largely unknown. We aimed to investigate the association of six genetic risk scores (GRSs) with changes in plasma glucose, insulin sensitivity, insulin secretion and incident type 2 diabetes in the prospective METabolic Syndrome In Men (METSIM) study. Methods: We generated weighted GRSs for fasting plasma glucose ([FPG] GRSFPG, 35 SNPs), 2 h plasma glucose ([2hPG] GRS2hPG, 9 SNPs), insulin secretion (GRSIS, 17 SNPs), insulin resistance (GRSIR, 9 SNPs) and BMI (GRSBMI, 95 SNPs) and a non-weighted GRS for type 2 diabetes (GRST2D, 76 SNPs) in up to 8749 non-diabetic Finnish men. Linear regression was used to test associations of the GRSs with changes in glycaemic traits over time. Results: GRST2D, GRSFPG and GRSIS were associated with an increase in FPG, GRST2D with an increase in glucose AUC and a decrease in insulin secretion, and GRS2hPG with an increase in 2hPG during the follow-up (p < 0.0017 for all models). GRST2D, GRSFPG and GRSIS were associated with incident type 2 diabetes (p < 0.008 for all models). GRSBMI and GRSIR were not significantly associated with any changes in glycaemic traits. Conclusions/interpretation: In the METSIM follow-up study, GRST2D, GRSFPG and GRSIS were associated with the worsening of FPG and an increase in incident type 2 diabetes. GRST2D was additionally associated with a decrease in insulin secretion, and GRS2hPG with an increase in 2hPG

    Open chromatin profiling in adipose tissue marks genomic regions with functional roles in cardiometabolic traits

    Get PDF
    Identifying the regulatory mechanisms of genome-wide association study (GWAS) loci affecting adipose tissue has been restricted due to limited characterization of adipose transcriptional regulatory elements. We profiled chromatin accessibility in three frozen human subcutaneous adipose tissue needle biopsies and preadipocytes and adipocytes from the Simpson Golabi-Behmel Syndrome (SGBS) cell strain using an assay for transposase-accessible chromatin (ATAC-seq). We identified 68,571 representative accessible chromatin regions (peaks) across adipose tissue samples (FDR, 5%). GWAS loci for eight cardiometabolic traits were enriched in these peaks (P, 0.005), with the strongest enrichment for waist-hip ratio. Of 110 recently described cardiometabolic GWAS loci colocalized with adipose tissue eQTLs, 59 loci had one or more variants overlapping an adipose tissue peak. Annotated variants at the SNX10 waist-hip ratio locus and the ATP2A1-SH2B1 body mass index locus showed allelic differences in regulatory assays. These adipose tissue accessible chromatin regions elucidate genetic variants that may alter adipose tissue function to impact cardiometabolic traits

    Assessment of familial risk in patients with hidradenitis suppurativa

    Get PDF
    Dear Editor, Hidradenitis suppurativa (HS) is a chronic inflammatory skin disorder resulting in recurrent, painful nodules, abscesses and sinuses, with predilection for intertriginous sites.1 In previous cohorts relying primarily on chart review, 30–40% of patients reported family history of disease,2 but familial risk has not been formally assessed with more meticulous and focused data collection. A cohort of 676 patients with HS at the University of North Carolina Chapel Hill was enrolled in our clinical registry from August 2018 to December 2019, which collected detailed family history data using questionnaires and skilled interviewers. In total 57·5% of patients reported HS in either first- or second-degree relatives, including 49·5% with an affected first-degree relative. This suggests a possible genetic contribution to HS. This study’s aim was to quantify familial risk in patients with HS. This study was approved by the University of North Carolina School of Medicine Institutional Review Board, approval #18-1209

    Moderate to vigorous physical activity interactions with genetic variants and body mass index in a large US ethnically diverse cohort

    Get PDF
    Summary What is already known about this subject Genome-Wide Association Studies have successfully identified numerous genetic loci that influence body mass index in European-descent middle-aged adults. Adolescence is a high-risk period for the development of adult obesity and severe obesity. Physical activity is one of the most promising behavioural candidates for preventing and reducing weight gain, particularly among youth. What this study adds An examination of the joint association between 41 of the well-established obesity susceptibility single-nucleotide polymorphisms with <5 vs. ≥5 bouts of moderate to vigorous physical activity (MVPA) per week in relation to body mass index (BMI)-for-age Z-score in a nationally representative sample of European American, African-American and Hispanic American adolescents. Three nominally significant interactions (P < 0.05) varied by race/ethnicity. Overall, the estimated effect of the risk allele on BMI-for-age Z-score was greater in individuals with <5 than those with ≥5 bouts MVPA per week. Background Little is known about the interaction between genetic and behavioural factors during lifecycle risk periods for obesity and how associations vary across race/ethnicity. Objective The objective of this study was to examine joint associations of adiposity-related single-nucleotide polymorphisms (SNPs) and moderate to vigorous physical activity (MVPA) with body mass index (BMI) in a diverse adolescent cohort. Methods Using data from the National Longitudinal Study of Adolescent Health (n = 8113: Wave II 1996; ages 12-21, Wave III; ages 18-27), we assessed interactions of 41 well-established SNPs and MVPA with BMI-for-age Z-scores in European Americans (EA; n = 5077), African-Americans (AA; n = 1736) and Hispanic Americans (HA; n = 1300). Results Of 97 assessed, we found nominally significant SNP-MVPA interactions on BMI-for-age Z-score in EA at GNPDA2 and FTO and in HA at LZTR2/SEC16B. In EA, the estimated effect of the FTO risk allele on BMI-for-age Z-score was lower (β = -0.13; 95% confidence interval [CI]: 0.08, 0.18) in individuals with ≥5 vs. <5 (β = 0.24; CI: 0.16, 0.32) bouts of MVPA per week (P for interaction 0.02). Race/ethnicity-pooled meta-analysis showed nominally significant interactions for SNPs at TFAP2B, POC5 and LYPLAL1. Conclusions High MVPA may attenuate underlying genetic risk for obesity during adolescence, a high-risk period for adult obesity
    corecore