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Abstract

Many genome-wide association studies (GWAS) have identified signals located in non-coding 

regions, and an increasing number of functional genomics annotations of regulatory elements and 

assays of regulatory activity have been used to investigate mechanisms. Genome-wide datasets 

that characterize chromatin structure help detect potential regulatory elements. Assays to 

experimentally assess candidate variants include transcriptional reporter assays, and recently, 

massively parallel reporter assays (MPRAs). Additionally, the effect of candidate regulatory 

elements and variants on gene expression and function can be evaluated using genomic editing 

with the CRISPR-Cas9 technology. We highlight some recent studies that employed these 

strategies to identify variant effects and elucidate molecular and/or biological mechanisms at 

GWAS loci for lipid traits and coronary artery disease.

Introduction

Human genome-wide association studies (GWAS) have identified hundreds of DNA variants 

associated with blood lipid levels and coronary artery disease. Blood lipid levels are a risk 

factor for cardiovascular disease, including increased low-density lipoprotein cholesterol 

(LDL-C), and increased triglycerides [1,2]. GWAS have been very successful at identifying 

genetic variants associated with these complex metabolic diseases [3,4] however, 

characterizing the molecular mechanisms responsible for these associations has been 

challenging.

Most variants identified by GWAS are located within non-coding regions of the genome [5], 

suggesting that these variants do not alter the structure or function of the encoded proteins. 

Variants located within regulatory elements, such as enhancer or silencer regions, may act to 

enhance or reduce gene expression. These regulatory regions may affect multiple genes and 

may regulate genes located hundreds of kilobases away [6,7]. Current challenges are to 

identify which GWAS variants have regulatory functions and to characterize the molecular 

mechanisms by which allelic differences affect gene activity and disease risk. Recently, 
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identification of regulatory elements and variants has been facilitated by technological 

development of genome-wide functional assays.

Experimental assays are necessary to determine which of the variants located in regulatory 

regions have allelic effects on regulatory activity. For example, transcriptional reporter 

assays are used to identify variants that alter promoter or enhancer/silencer activity, and 

recently, high-throughput approaches have been used to test dozens to thousands of 

candidate variants in a massively parallel fashion. Notably, GWAS studies identify lead 

variants that are most strongly associated with a trait or disease; however, these lead variants 

are not necessarily the functional regulatory variants due to sampling variation, technical, or 

stochastic reasons. Variants that are strongly linked, or inherited together (in strong linkage 

disequilibrium) with the lead variants may have regulatory effects, which highlights the need 

to test a number of variants in experimental assays. Reporter assays are often performed by 

cloning variant-containing regions into vectors containing a reporter gene and transfecting 

biologically-relevant cell types including induced pluripotent stem cells (iPSCs) that can be 

differentiated into several target cell types [8]. Another recent strategy for experimental 

evaluation of regulatory elements and variants uses CRISPR-Cas9-mediated genome editing. 

Cells or organisms can be edited to delete or alter the effect of a regulatory element or to 

create specific allelic substitutions.

Functional genomics regulatory annotation data can be used to help guide the selection of 

candidate regulatory elements and variants for experimental testing. These data are 

generated through the use of high-throughput methods, including open chromatin, chromatin 

conformation, and chromatin immunoprecipitation assays followed by high-throughput 

sequencing. These assays can be helpful at detecting candidate regulatory elements, 

including enhancer or silencer regions, which may ultimately aid in elucidating the 

mechanisms underlying the relationships between the GWAS variants and trait [9–11]. In 

this review, we discuss some recent approaches used to identify functional variants and 

mechanisms at lipid or coronary artery disease GWAS loci.

High-throughput functional genomics assays

High-throughput functional genomics assays of chromatin structure identify genomic 

regions characteristic of regulatory elements. Several consortia, including the Encyclopedia 

of DNA elements (ENCODE) consortium, the National Institutes of Health (NIH) Roadmap 

Epigenomics Mapping Consortium, and others in the International Human Epigenome 

Consortium [9,10,12] have generated genome-wide maps in hundreds of cell types and 

tissues. Maps of open, or accessible, chromatin denote DNA regions devoid of histones and 

more accessible to transcription factors, as detected by DNase hypersensitivity (DNase HS) 

[13] formaldehyde-assisted isolation of regulatory elements (FAIRE) [14] or assays for 

transposase-accessible chromatin (ATAC)-sequencing [15,16] (Table 1). Maps of histone 

modifications, detected through chromatin immunoprecipitation (ChIP)-sequencing [17,18]), 

can be integrated to predict chromatin state, including promoter, enhancer, and silencer 

regions [19], and regions bound by transcription factors can be further annotated with 

sequence binding motifs and to detect transcription factor footprints [17,20]. Maps of 

chromatin interactions, higher-order chromatin structure, topologically associated domains 
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(TADs), and frequently interacting regions (FIREs) are based on chromosome conformation 

capture methods, including Hi-C and chromatin interaction analysis by paired-end tag 

sequencing (ChIA-PET) [21–23].

Integrating these data and maps from trait-relevant cell types can be used to guide the 

identification of trait-associated variants located in regulatory regions. Data sets of 

chromatin accessibility and histone marks have differing signal strength compared to 

background and may be influenced by cellular environment, so multiple lines of evidence 

(i.e. peaks) can provide greater evidence of a regulatory element. Specific histone marks 

tend to be observed at different types of elements, such as H3K27ac marks at active 

enhancers. However, neither individual marks nor the absence of regulatory evidence from 

an assay is definitive, and mere presence of a variant in a region of histone marks does not 

indicate that the variant alleles alter regulatory activity [24]. While evidence of chromatin 

interactions between variant positions and a transcription start site supports the potential for 

a regulatory effect of variants on a gene, the interaction alone is not definitive, and absence 

of interactions may be due to assay resolution or cellular environment. Therefore, combining 

one or more pieces of evidence from high-throughput regulatory assay data with other 

functional genomics experiments, such as reporter assays and genomic editing, enhances the 

likelihood of identifying candidate regulatory variants.

Allelic differences in transcriptional activity

A common approach to examine variants for effects on transcriptional activity is a reporter 

assay. DNA segments of tens to thousands of base pairs containing individual allele(s) of a 

variant or haplotype are cloned into a vector containing a reporter gene, such as luciferase, 

whose activity is easily measured, and transfected into cells expected to express relevant 

transcription factors. The relative luciferase activity is compared between alleles and to a 

control lacking the inserted DNA segment (Figure 1).

Recently, individual or multiple regulatory variants have been shown to influence allelic 

differences in transcriptional activity at GWAS loci for lipid traits or coronary artery disease. 

At an association signal for triglycerides near TMEM241, the rs17259126-A allele showed 

higher transcriptional activity than the rs17259126-G allele and also stronger HNF4A 

protein binding [25]. The authors proposed that the rs17259126-G allele is associated with 

lower TMEM241 expression, leading to higher triglyceride levels. At an association signal 

for high density lipoprotein cholesterol (HDL-C) near ANGPTL8, the rs12463177-C allele 

was associated with lower ANGPTL8 expression, showed lower transcriptional activity in 

reporter assays, and decreased protein binding in electrophoretic mobility shift assays 

(EMSAs) [26]. At an association signal for coronary artery disease near GUCY1A3, the 

rs7692387-A allele showed higher transcriptional activity than the rs7692387-G coronary 

artery disease risk allele. Individuals homozygous for the risk allele showed lower 

expression of GUCY1A3 (encoding [alpha]1 subunit of soluble guanylyl cyclase (sGC)) in 

whole blood. In addition, human platelet-rich plasma samples homozygous for the risk allele 

showed a reduced effect on inhibition of both sGC stimulation and induced platelet 

aggregation [27]. Finally, at an association signal for coronary artery disease near PPAP2B 
(also known as PLPP3, encoding LPP3 protein), stimulating primary human macrophages 
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with oxidized LDL led to more strongly increased transcriptional enhancer activity for the 

rs72664324-A allele compared to the rs72664324-G allele [28]. In addition, the rs72664324-

G risk allele was associated with lower PPA2B expression (induced by oxidized LDL) in 

primary human macrophages. The authors hypothesized that lower expression results in 

reduced enzymatic function, which affects pro-inflammatory signaling in atherosclerotic 

plaques. For all of these examples, one or more chromatin annotations were used to select 

variants to test for regulatory activity, and further studies of regulatory and biological 

mechanisms would increase the rigor of the conclusions.

Transcriptional activity assays have also shown that more than one variant on the same 

haplotype can have allelic effects. At an HDL-C association signal near GALNT2, candidate 

variants were tested for allelic or haplotype differences in transcriptional activity regardless 

of chromatin annotation [24]. Two variants, rs2281721 and rs4846913, that are in strong 

linkage disequilibrium with each other (r2=0.96) and located ∼2 kb apart, showed strong 

allelic differences in transcriptional enhancer activity that matched the direction of variant 

association with GALNT2 expression level in adipose and liver. The alleles associated with 

increased HDL-C levels were associated with increased GALNT2 expression level and 

increased transcriptional enhancer activity. These data are consistent with subsequent 

evidence in rodents, non-human primates and humans that loss of the glycoprotein 

modifications by GALNT2 on target proteins, including phospholipid transfer protein 

(PLTP), led to lower HDL-C levels [29]. These variants also showed differential binding to 

USF1 and CEBPB in EMSA and ChIP assays. These findings suggest that multiple variants 

may act together to contribute to transcriptional activity and the underlying molecular 

mechanism(s) at GWAS lipid loci.

Overall, transcriptional reporter assays are valuable to demonstrate that specific nucleotides 

can increase or decrease transcriptional activity, especially in enhancer regions. At some 

loci, including a stimulus can better capture allelic differences in regulatory activity and 

simulate how variants act in vivo. Transcriptional reporter assays for individual variants are 

feasible to implement in a research laboratory with moderate cost and minimal 

computational requirements. However, these assays examine DNA segments and variants 

subcloned into vectors, removing the region from its natural chromatin conformation and 

cellular context. In addition, these assays are low-throughput, allowing only a few DNA 

variants to be analyzed concurrently.

High-throughput screens for regulatory variants

The advent of high-throughput, massively parallel reporter assays (MPRAs) have enabled 

multiple variants and regulatory regions to be analyzed more rapidly and efficiently. These 

methods typically use a barcode or tag at the end of the reporter gene to facilitate high-

throughput sequencing and quantification of expressed sequence reads [30–33]. In another 

design, expression level of the regulatory region itself is assayed [34,35].

Recent studies have applied MPRA methods to lipid and coronary artery disease loci. 

Tewhey and colleagues used MPRA in lymphoblastoid cell lines to test variants associated 

with gene expression levels. Tested variants included 9,664 variants at 163 GWAS loci for a 
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wide range of traits; of these, 248 variants (2.6%) exhibited allelic differences. For example, 

at an association signal for coronary artery disease near UBE2Z, a screen of 105 variants in 

MPRAs detected eight variants that showed allelic differences, one of which, rs4378658, is 

also located in an ENCODE-annotated regulatory region [36]. This study also reported 

allelic differences in MPRA for rs342468 near AFF1 at a triglycerides locus. In another 

study, Pashos and colleagues used MPRAs in NIH 3T3 fibroblasts to screen candidate 

functional variants at lipid GWAS loci that were also associated with gene expression levels 

in hepatocyte-like cells. They screened 525 variants across three loci and reported the single 

variant at each locus that showed the strongest evidence of allelic differences [37]. Among 

the variants at the three loci, rs10872142 also overlapped regulatory chromatin annotations 

in human liver and adipose cells (Figure 2). rs10872142 is in strong linkage disequilibrium 

(r2=0.97, Europeans) with a lead variant associated with LDL-C, rs11153594, and the 

rs11153594-C allele associated with increased LDL-C pairs with the rs10872142-C allele. 

Induced pluripotent stem cells homozygous for the rs10872142-C allele showed higher FRK 
expression compared to cells heterozygous (A/C) at rs10872142. Variants detected by 

MPRA screens still require further experimental validation.

Taken together, MPRAs can be useful at narrowing down and identifying GWAS regulatory 

variants. These assays can be especially beneficial if there are numerous candidate 

functional variants at an association signal, because they enable a large number of variants to 

be screened in an experiment. MPRAs require a greater cost per experiment but cost 

substantially less per variant than assays of individual variants. However, limitations to 

MPRAs remain, as study designs may not successfully capture all potential regulatory 

variants, leading to false negatives, and the assays still remove putative regulatory regions 

from their natural chromatin conformation and cellular context, which may be necessary to 

observe functional consequences. MPRAs have a larger computational requirement to design 

reagents and to analyze high-throughput sequencing reads compared to individual 

transcriptional reporter assays. Additionally, while MPRAs can help detect regulatory 

variants that affect transcriptional activity, they would not identify variants that affect 

integrated processes such as mRNA splicing.

Genomic editing to characterize regulatory variants and elements

Another exciting method to examine the effect of regulatory elements and variants at GWAS 

loci is genomic editing followed by assays of gene expression and/or gene function (Figure 

1). Genomic editing can be achieved through using clustered regularly interspaced short 

palindromic repeats (CRISPR) technology, guide RNAs, and Cas9 nuclease protein to create 

double-stranded breaks at target DNA sequences [38–40]. The double-stranded breaks can 

be repaired by non-homologous end-joining (NHEJ), which is more error-prone and often 

results in insertions or deletions of the targeted sequence, or by homology-directed repair, 

which repairs the break using template DNA, yet is less efficient [41]. Using the CRISPR-

Cas9 system, one can disrupt or delete a regulatory element or substitute variant allele(s). 

Isolated clones of cells containing heterozygous or homozygous edits, or in some cases, 

pools of edited cells or organisms, can be analyzed to assess the effects on gene expression 

and/or gene function [42,43].
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Genome editing has been used recently to delete regulatory elements at GWAS signals for 

lipid traits and coronary artery disease. At ANGPTL3/DOCK7, a well-established locus that 

alters blood cholesterol and triglyceride levels [44,45], Pashos and colleagues deleted ∼40 

bp spanning candidate regulatory variant rs10889356 in pluripotent stem cell lines. In 

undifferentiated cells, deletion of the putative regulatory element reduced expression of 

DOCK7, and after differentiation into hepatocyte-like cells, deletion-containing cells 

showed both decreased DOCK7 expression and increased ANGPTL3 expression [37]. 

Nonsense mutations in ANGPTL3 have been found in individuals with combined 

hypolipidemia [44]. At an association signal for multiple traits including coronary artery 

disease, Gupta and colleagues deleted ∼90 bp spanning rs9349379 in pluripotent stem cells. 

After differentiation into endothelial and vascular smooth muscle cells, deletion-containing 

cells showed increased expression of EDN1 compared to wild-type cells [46]. Both 

experiments served to validate the target gene and direction of effect of the predicted 

regulatory element.

Editing cells or organisms to create allele substitutions can provide an unambiguous test of a 

variant's effect. Pashos and colleagues replaced the rs10872142-C allele with the 

rs10872142-A allele in an induced pluripotent stem cell line and observed decreased FRK 
expression [37]. Gupta and colleagues performed two steps of genome editing to create stem 

cell lines homozygous for either the rs9349379-A or G allele to further validate the variant 

effect on EDN1 gene and protein levels. The authors found that endothelial cells 

homozygous for the coronary artery disease risk allele rs9349379-G showed higher EDN1 
expression and higher levels of the encoded vasoconstrictor protein, which they hypothesize 

results in the increased disease risk [46].

Overall, genome editing provides a valuable and precise tool to elucidate effects of genetic 

variation on genes. Generating deletions and/or allelic substitutions allows variant or 

element effects to be evaluated in their genomic and cellular context, in contrast to 

approaches that employ transient transfection or transduction of exogenous DNA and 

reporter gene vectors. The ability to create deletions and substitutions allows multiple types 

of variants, including splicing variants, to be examined. Despite the utility of studying 

variant substitutions, the relatively inefficient homology-directed repair pathway still 

presents challenges in evaluating allelic effects of individual or multiple variants.

Conclusions and perspective

The discovery of hundreds of GWAS loci has provided an unparalleled opportunity to better 

understand the molecular basis of complex disease, yet for many loci, the underlying genes 

and mechanisms remain unknown. The many noncoding disease risk variants may not 

necessarily affect expression of the nearest gene, may act on more than one gene, and may 

increase or decrease gene expression. These points highlight the value of functional assays 

to investigate the molecular mechanisms responsible for GWAS associations. Functional 

genomics regulatory annotation data combined with experimental assays, such as 

transcriptional reporter assays in a cellular context and genome editing, can pinpoint 

regulatory regions and/or variants at GWAS signals.
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Recent functional studies have demonstrated the complexity of regulatory variant 

contributions to GWAS loci. Transcriptional reporter assays, especially MPRAs, have 

demonstrated that many variants located in annotated regulatory elements do not exhibit 

effects on transcriptional activity and that variants outside annotated elements can show 

effects on activity [36]. These results suggest that many potential regulatory variants do not 

have functional consequences and/or transcriptional assays may be imperfect. While 

chromatin annotations can be useful in guiding the selection of candidate regulatory variants 

to test in experimental assays, these annotations shouldn't be used exclusively to define 

which variants are regulatory. In addition, while single functional variants have been 

implicated at some loci, MPRAs often detect multiple variants that exhibit significant allelic 

or haplotype differences in transcriptional activity [35,36], and rigorous functional studies 

have demonstrated that more than one variant on the same haplotype can affect gene 

regulation [26,24]. Furthermore, variants on different haplotypes, often detected as different 

association signals, can affect regulation or function of the same or potentially different 

genes.

An important study design consideration for functional assays to characterize GWAS loci is 

cell type. Cell lines are readily available, relatively straight-forward to maintain, and 

proliferate, enabling large-scale and repeatable studies. However, some regulatory elements 

and variants may only act in a specific cell or tissue, or under specific environmental 

conditions or stimuli [28,37,47], neither of which might be apparent from the phenotype or 

expression pattern of candidate genes. Testing candidate regulatory variants in pluripotent 

stem cells that can be differentiated into appropriate cell types is becoming more routine. 

Cell type may also be important for measuring the effects of altered gene expression on 

biological function such as cholesterol synthesis or atherosclerotic plaque formation.

Although we are starting to understand the roles of individual variant and genes at GWAS 

loci, many loci remain poorly understood. Additional and improved high-throughput 

methods are needed to more efficiently screen thorough sets of candidate variants, yet 

screens alone will likely remain insufficient, and rigorous validation of variant and gene 

effects will be required. Due to of the limitations of each individual assay, a combination of 

assays will be especially valuable to provide more lines of evidence and a clearer picture 

into the molecular and biological mechanisms responsible for lipid traits and coronary artery 

disease.
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Figure 1. Recent strategies for identifying regulatory variants and elements using functional 
genomics assays
DNA segments can be cloned into a vector containing a reporter gene, one at a time or in a 

library. Reporter activity is then measured and compared to the reporter activity of a control 

vector or input DNA. These assays can be used to identify variants that show allelic 

differences in transcriptional activity. Candidate regulatory variants and their effect on gene 

expression and function can be further investigated by genomic editing methods. The DNA 

segment containing the candidate regulatory variant(s) can be targeted using CRISPR-Cas9 

methods and a guide RNA to generate double-stranded breaks. Insertions or deletions can be 

generated by non-homologous end joining, or allelic substitutions can be generated by 

homology-directed repair with the addition of a donor DNA template. The effects of these 

edits can be tested by evaluating gene expression levels, protein levels, and biological 

function.
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Figure 2. Chromatin regulatory annotations predict rs10872142 is located within an enhancer
, rs10872142 is strongly linked with LDL-C-associated lead GWAS variant rs11153594 and 

was reported as a regulatory variant associated with FRK gene expression in liver [37]. 

H3K4me1 ChIP-seq peaks are shown for adipose-derived mesenchymal stem cells and 

primary adipose nuclei (top green tracks) from the NIH Epigenomics Roadmap 

Consortium's Human Epigenome Atlas [10]. H3K4me1, H3K4me2, or H3K4me3 represent 

mono-, di- or tri-methylation of lysine 4 of histone H3, and are modifications commonly 

observed in regulatory enhancer or promoter regions [18,19]. ENCODE H3K4me1,2,3 

ChIP-seq, DNase, and FAIRE peaks are shown for HepG2 hepatocellular carcinoma cells 

(purple tracks), and H3K4me1 ChIP-seq and DNase peaks are shown for human adult liver 

and hepatocytes (black tracks) [9]. The DNase and FAIRE peaks represent open, accessible 

chromatin regions devoid of histones, and the peaks corresponding to H3K4me1, H3K4me2 

and H3K4me3 marks on the adjacent histones are commonly observed at regulatory 

enhancer and/or promoter regions. The multiple tracks provide greater evidence that the 

variant is located within a regulatory region.
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Table 1
Acronyms for terms and assays used to study noncoding, regulatory regions

Acronym Full name Description

DNase DNase I hypersensitivity assay used to detect open, accessible chromatin regions

FAIRE Formaldehyde-assisted isolation of regulatory elements assay used to detect open, accessible chromatin regions

ATAC-seq Assay for transposase-accessible chromatin with high-
throughput sequencing

assay used to detect open, accessible chromatin regions

ChIP Chromatin immunoprecipitation assay used to detect protein binding or histone 
modifications

TAD Topologically associated domain term used to describe three-dimensional chromatin 
organization and interacting regions

FIRE Frequently interacting regions term used to describe three-dimensional chromatin 
organization

3C, 4C, 5C, HiC, 
ChIA-PET

Chromosome conformation capture, “ -on-chip,” -carbon 
copy, chromatin interaction analysis by paired-end tag 
sequencing

assays used to detect chromatin contacts, chromatin 
organization

EMSA Electrophoretic mobility shift assay assay used to detect proteins bound to a nucleotide 
sequence

MPRA Massively parallel reporter assay assay used to test candidates for effects on transcriptional 
activity

CRISPR Clustered regularly interspaced short palindromic repeats used typically with Cas9 protein and guide RNAs for 
genomic editing
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