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Abstract

Summary: Tens of thousands of reproducibly identified GWAS (Genome-Wide Association 
Studies) variants, with the vast majority falling in non-coding regions resulting in no eventual pro-

tein products, call urgently for mechanistic interpretations. Although numerous methods exist, 
there are few, if any methods, for simultaneously testing the mediation effects of multiple corre-

lated SNPs via some mediator (e.g. the expression of a gene in the neighborhood) on phenotypic 
outcome. We propose multi-SNP mediation intersection-union test (SMUT) to fill in this methodo-

logical gap. Our extensive simulations demonstrate the validity of SMUT as well as substantial, up 
to 92%, power gains over alternative methods. In addition, SMUT confirmed known mediators in a 
real dataset of Finns for plasma adiponectin level, which were missed by many alternative meth-

ods. We believe SMUT will become a useful tool to generate mechanistic hypotheses underlying 
GWAS variants, facilitating functional follow-up.

Availability and implementation: The R package SMUT is publicly available from CRAN at https://

CRAN.R-project.org/package¼SMUT.

Contact: xiaojinz@email.unc.edu or jfine@email.unc.edu or yunli@med.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWASs) have been successful for

detecting genetic variants associated with complex diseases and

traits. The effects of genetic variants either individually or even in

aggregation on complex traits are typically small to moderate at

best. More importantly, the vast majority of GWAS variants reside

in non-coding regions, with largely elusive underlying mechanism.

Expression quantitative trait loci (eQTL) analysis (Lloyd-Jones

et al., 2017; The GTEx Consortium, 2015; Yang et al., 2017) has

facilitated functional interpretation. Transcriptome-wide associ-

ation studies (TWAS), which identify association between imputed

gene expression and trait, also generates mechanistic hypotheses

(Gamazon et al., 2015; Gusev et al., 2016)

(BioRxiv: https://doi.org/10.1101/286013). Such integration of

genotype, gene expression and phenotype information from GWAS

and eQTL datasets will fundamentally advance our knowledge of

molecular mechanisms of complex disorders and traits. Several ex-

cellent review papers exist for causal relationship inference in the

context of genetic mapping for complex traits (Ainsworth et al.,

2017; Civelek and Lusis, 2014).

Integrative genomic studies enable mechanistic interpretations,

e.g. via either the methods of instrumental variable(s) [IV(s)] and/or

mediation analysis. Mendelian randomization (MR) framework

(Lawlor et al., 2008; Smith and Ebrahim, 2003) treats genetic var-

iant(s) as the IV(s) to assess causal effects of genetic variants through

some mediator(s) of interest [e.g. expression levels of some gene(s)]

on the trait of interest. Classic MR methods make several key

assumptions including complete mediation, where single nucleotide

polymorphisms (SNPs) must be marginally independent of the con-

founding between mediator and outcome, and a priori knowledge

that the causal flow is from SNP to mediator but not the reverse

(Lawlor et al., 2008). Violating the assumptions leads to invalid IV
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analysis and biased inference. Some more recent MR methods allow

relaxation of certain key assumption(s). Such relaxation(s), how-

ever, are at costs. For example, MR-Egger (Barfield et al., 2018;

Bowden et al., 2015) relaxes the complete mediation assumption

and allows multiple IVs/SNPs by first analyzing each IV individually

and then meta-analyzing individual IV results. However, MR-Egger

assumes that these multiple SNPs are uncorrelated, limiting its appli-

cation to a typical locus where multiple partially dependent SNPs

exist.

Another drawback of MR methods is that they cannot distin-

guish between mediation and pleiotropy, the phenomenon of one

SNP effecting on multiple outcomes (at either molecular or organism

level) (Fig. 1). Since pleiotropy is commonly observed (Solovieff

et al., 2013), MR methods are not preferred, when the goal is to

infer mediation or to generate mechanistic hypotheses. The recent

CaMMEL method (BioRxiv: https://doi.org/10.1101/219428),

extending the MR-Egger framework, allows correlated IVs and in-

complete mediation beyond the multiple mediators modeled and, to

distinguish mediation from pleiotropy. CaMMEL, designed for mul-

tiple mediators modeled simultaneously, is sub-optimal for single

mediator analysis. In addition, CaMMEL assumes the presence of at

least one eQTL since it tests the effect of mediators on phenotype, in

contrast to testing SNP(s) effect via mediator(s) on phenotype.

Similar to CaMMEL, MR-BMA (BioRxiv: https://doi.org/10.1101/

396333), also adopts a Bayesian framework, leverages summary sta-

tistics, and accommodates multiple mediators and multiple IVs.

Unlike CaMMEL, MR-BMA assumes uncorrelated IVs and com-

plete mediation through the modeled mediators, and aims primarily

at selecting true mediators from a set of correlated mediators.

Besides TWAS and MR, other mechanism elucidating methods in

the recent literature include causal inference test (CIT) (Millstein

et al., 2009) and Huang et al. (Huang, 2015; Huang et al., 2014).

CIT employs a regression-based framework to test for complete medi-

ation, which is a largely unrealistic scenario. The methods of Huang

et al. adopt a kernel regression framework and uses variance compo-

nent score statistic (Lin, 1997) to test for mediation. However, these

methods also assume that genetic variants tested contain a priori

known eQTL(s), and similar to CaMMEL, test the effect of mediators

on phenotype, in contrast to testing indirect SNP(s) effect through

mediators on phenotype.

Popular classic mediation approaches include causal steps, differ-

ence method and product method (MacKinnon et al., 2007;

VanderWeele, 2016). The causal steps approach performs multiple

tests involved in a causal chain. The difference method is based on the

difference in the coefficient estimate of the treatment (here, a SNP) be-

fore and after including the mediator in the regression model. The

product method, such as the Sobel test (Sobel, 1982), explicitly tests

the product of the treatment coefficient in the mediator model and

the mediator coefficient in the outcome model. These methods, com-

monly adopted to test the mediation effect of a single genetic variant

on a trait through a single mediator, have been evaluated by Barfield

et al. (2017). However, it is unclear that such methods can be adapted

to integrative genomic settings with high dimensional SNPs.

In short, to the best of our knowledge, few, if any, existing meth-

ods can simultaneously accommodate incomplete mediation as well

as multiple correlated SNPs, when complete individual level data

(including genotype, mediator and phenotype information) are avail-

able. To fill the gap, we propose here multi-SNP mediation intersec-

tion-union test (SMUT) to explicitly accommodate both direct and

indirect (via mediator) effect of multiple (in the order of hundreds to

thousands) correlated SNPs on phenotype of interest. SMUT is a flex-

ible, regression-based approach that evaluates the joint mediation

effects of multiple genetic variants on some trait of interest through a

single mediator. SMUT extends the classic framework of Baron and

Kenny (1986) to allow multiple treatment variables (in our context,

multiple genetic variants). Leveraging the intersection-union test

(IUT) (Berger and Hsu, 1996), SMUT decomposes mediation effects

using two separate regression models. One is the mediator model

where we regress the mediator on multiple genetic variants. For this

mediator model, SMUT adopts the SKAT (Lee et al., 2014; Wu et al.,

2011) framework to handle a potentially large number of genetic var-

iants in a statistically and computationally efficient manner. The

other is the outcome model where we regress the outcome on both

the mediator and multiple genetic variants. Classic regression models

fail for the outcome model due to the high dimensionality of the

SNPs. To solve this issue in SMUT’s outcome model, we adopt a

mixed effects model and the Rao’s score test (Engle, 1984;

Radhakrishna Rao and Bartlett, 1948) for mediation testing. Our ex-

tensive simulations and real data analysis demonstrate the advantages

of SMUT over alternative methods. For example, with controlled

Type-I error, we show up to 92% power gain in simulations. More

importantly, in real data analysis, SMUT confirms mediations at sev-

eral well-established positive control loci while most of the alternative

methods failed to reveal any of the relationships.

2 Materials and methods

2.1 SMUT
SMUT is a powerful test for the joint mediation effects of multiple

genetic variants on a trait through a single mediator. The multiple

genetic variants can be in a region, sub-locus defined by genes, or

moving windows across the genome.

2.2 Notation and data set-up
Without loss of generality, we assume that we have three types of data.

Specifically, genotypes, gene expression measurements (can be other

types of mediators such as metabolite levels or protein abundances) and

phenotypic trait are available. Let G ¼ G1;G2; . . . ;ð GqÞ be the n by q

genotype matrix, where n is sample size; q is the total number of mark-

er and Gj ¼ ðG1j;G2j; . . . ;GnjÞT is the vector of genotypes for the n

samples at marker j, j ¼ 1; 2; . . . ;q. We consider an additive model

with Gij taking values 0, 1, 2, measuring the number of copies of the

minor allele. Suppose in total there are l genes M;Mð2Þ; Mð3Þ; . . . ;MðlÞ,

with the first notation M having no superscript. Here,

M ¼ M1;M2; . . . ;Mnð ÞT , is the vector of expression values of a given

gene (the mediator) for n samples. Similarly, Mð2Þ; . . . ;MðlÞ are the vec-

tors of expression values of the other ðl � 1Þ genes (i.e. mediators). Let

Y ¼ ðY1;Y2; . . . ;YnÞT be the vector of phenotypic trait.

2.3 SMUT model and test for joint mediation effects
SMUT models the effects of genetic variants on the trait mediated

by the expression level of a single gene. We start with considering a

Fig. 1. Directed acyclic graph for mediation and pleiotropy. (A) Red arrows in-

dicate the mediation effect of the genotype on the outcome through the medi-

ator. (B) Orange arrows indicate the pleiotropy
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more general model with multiple genes expression levels via the fol-

lowing regression models:

Y ¼ a1 þMhþ
Xl

k¼2

MðkÞhðkÞ þGcþ �1 (1)

M ¼ a2 þGbþ �2
Mð2Þ ¼ að2Þ þGbð2Þ þ �ð2Þ
Mð3Þ ¼ að3Þ þGbð3Þ þ �ð3Þ

. . .
MðlÞ ¼ aðlÞ þGbðlÞ þ �ðlÞ

8>>>><
>>>>:

(2)

where c ¼ ðc1; c2; . . . ; cqÞTare the direct effects of the q genetic var-

iants; bh measures the indirect effects mediated by M for the mul-

tiple genetic variants. Similarly bðkÞhðkÞ measures the indirect effects

mediated by MðkÞ; k ¼ 2; 3; . . .;l:

Substituting the M;Mð2Þ;Mð3Þ; . . . ;MðlÞ with the values in (2), we have

Y ¼ ~a þGbhþG~c þ ~� (3)

where ~a ¼ a1 þ a2hþ
Pl

k¼2 aðkÞhðkÞ, ~c ¼ cþ
Pl

k¼2 bðkÞhðkÞ, ~� ¼ �1þ
h�2 þ

Pl
k¼2 hðkÞ�ðkÞ Equation (3) shows that indirect effects mediated

by Mð2Þ;Mð3Þ; . . . ;MðlÞ would be absorbed by the direct effects ~c if

we only model gene M: Therefore, without loss of generality, we

only consider the mediation analysis for a given single gene expres-

sion level and consider the regression models below

Y ¼ a1 þMhþGcþ �1 Outcome model (4)

M ¼ a2 þGbþ �2 Mediator model (5)

where �1 � Nð0; r2
1IÞ, �2 � Nð0; r2

2IÞ, and we assume that �1 and

�2 are independent; otherwise their correlation would make them-

selves mediator-outcome confounders which violates the key as-

sumption for mediation analysis (MacKinnon et al., 2007;

VanderWeele, 2016).

Here c measures effects from two sources: direct effects of the q

genetic variants on outcome; and indirect effects of genetic variants

via mediators other than M. For presentation brevity and clarity, we

hereafter use direct effects to refer to the aggregated effects from the

above two sources. We are interested in testing the mediation effect,

of the q genetic variants via mediator M. Specifically, we test the

null hypothesis H0 : bh ¼ 0, which is divided into two sub-

hypotheses, Hh
0 : h ¼ 0 and Hb

0 : b ¼ 0: This then can be convenient-

ly solved by the IUT (Supplementary Section 1).

2.4 Testing b in the mediator model and h in the

outcome model
Many of the testing methods for association between multiple genetic

variants and the trait can be applied here. We adopt the SKAT frame-

work, a de facto locally powerful test (Ionita-Laza et al., 2013; Wu

et al., 2010, 2011), which efficiently accommodates large numbers of

genetic variants, including both common and rare variants.

The outcome model is also high dimensional with multiple genet-

ic effects and the mediator. Classic regression models tend to fail for

such models. As a solution, we employ the following mixed effects

model to reduce the dimension of parameters.

cj�i:i:d: Nðlc; r
2
c Þ

�i�i:i:d: Nð0; r2
� Þ

Yijðc1; . . . ; cq;GÞ ¼ a1 þMihþ Rq
j¼1Gijcj þ �i

:

8><
>:

(6)

We adopt an Expectation–maximization algorithm to obtain

maximum likelihood estimate under the null hypothesis and derive a

score test statistic for the fixed effect h in the presence of a high

dimensional SNPs, modeled as random effects (Supplementary

Section 2).

2.5 Simulations
To evaluate the performance of SMUT in comparison with alterna-

tive methods, we carried out extensive simulations to investigate

power and Type-I error. We first simulated 20 000 European-like

chromosomes in a 1 Mb region, using the COSI coalescent model

(Schaffner et al., 2005) to generate realistic data in terms of allele

frequency, linkage disequilibrium and population differentiation.

The final dataset had 23 889 SNPs in a 1 Mb region. We constructed

10 000 pseudo-individuals by pairing up the 20 000 simulated chro-

mosomes. To evaluate power and Type-I error, we generated 200

datasets with 1000 samples each by sampling without replacement

from the entire pool of 10 000 samples above. Simulations were

restricted to the 2891 SNPs with minor allele frequency (MAF)

�1%.

The outcome (trait) and the mediator were generated via the fol-

lowing outcome model (7) and mediator model (8), respectively.

Y ¼ a1 þMhþ ðsSNPs and oSNPsÞcþ �1 (7)

M ¼ a2 þ ðsSNPs and mSNPsÞbþ �2: (8)

Where �1 � N 0; 1ð Þ; �2 � N 0; 1ð Þ; b ¼ b1; b2; . . . ; bq

� �T ; c ¼ ðc1;

c2; . . . ; cqÞT ; bj�i:i:d:cbN 2; 2ð Þ; cj�i:i:d:ccN 2; 2ð Þ; j ¼ 1; 2; . . . ; q:

We set cc ¼ 0:2 to evaluate the performance of SMUT and alter-

native methods under the scenario of pleiotropy. Specifically, the

shared SNPs (sSNPs) between the two models are those that influ-

ence both the mediator and the outcome trait. The outcome (or me-

diator) specific SNPs only contribute to the trait (or mediator). The

causal SNPs are the union of the sSNPs, mediator specific SNPs

(mSNPs) and outcome specific SNPs (oSNPs). We considered two

scenarios in terms of causal SNP density: sparse and dense (Table 1),

with 10 and 1000 causal SNPs, respectively. The set of (10 or 1000)

causal SNPs, common across the 200 datasets, were randomly

selected from the 2891 SNPs with MAF � 1%. b and c, again

fixed across the 200 datasets, were independently drawn from a nor-

mal distribution with mean and variance both being 2. Error terms

�1 and �2 were independently generated from standard normal dis-

tribution and were separately simulated for each of the 200 datasets.

In the simulations, we tested the joint mediation effects of these

2891 SNPs on the trait using SMUT and other methods including

adapted Huang et al.’s method, adapted LASSO (Tibshirani, 1996),

adapted CaMMEL, Sobel test and SMR (Zhu et al., 2016). The

Huang et al.’s method only tests mediator effect in the outcome

model, assuming a priori the presence of SNPs’ effects on mediator

(i.e. non-zero b), adopting a kernel framework where effect(s) of

interest are treated as random and SNPs as fixed (Huang, 2015;

Table 1. Causal SNP composition in two simulated scenarios

No. of

causal SNPs

No. of

sSNPs

No. of

mSNPs

No. of

oSNPs

Sparse 10 4 3 3

Dense 1000 334 333 333

Note: The sparse(dense) scenario is to simulate datasets based on a

small(large) number of causal SNPs. Causal SNPs are the union of sSNPs,

mSNPs and oSNPs. sSNPs have effects on both mediator and outcome.

Mediator(outcome) specific SNPs have effects only on mediator(outcome).

All these SNPs are randomly selected from the 2891 SNPs with MAF�1%.



Huang et al., 2014), in contrast to our outcome model where SNPs

are treated as random and mediator of interest as fixed. For fair

comparisons across methods, i.e. testing both b and h, we applied

the original Huang et al. for the outcome model and SKAT for the

mediator model, then combined tests from the two models via IUT,

integrating the variance component score test in the outcome model

(from the original Huang et al.) and score test from SKAT in the me-

diator model. The adapted LASSO employs LASSO for variable se-

lection in the outcome model and applies IUT using regular

regression with the selected variables in the outcome model and all

the variables (i.e. genetic variants) via SKAT framework in the medi-

ator model. The adapted CaMMEL applies IUT on CaMMEL

results to test h in the outcome model and SKAT result to test b in

the mediator model. Since Sobel test and SMR can only model one

single SNP at a time, we tested each SNP separately and applied

Bonferroni adjustment. We applied and compared with the adapted

versions of Huang et al., CaMMEL and LASSO because the corre-

sponding original methods only test h in the outcome model. For all

the adapted versions, we utilize SKAT to test b in the mediator

model to be maximally comparable with our SMUT results. In other

words, adapted Huang et al. is SKAT þ original Huang et al. with

SKAT corresponding to the testing strategy in the mediator model

and original Huang et al. to the testing strategy in the outcome

model. Similarly, for CaMMEL and LASSO, we use adapted

CaMMEL and SKATþCaMMEL exchangeably; adapted LASSO

and SKATþCaMMEL exchangeably.

As detailed above, we simulated causal SNPs only from the pool

of common (MAF � 1%) SNPs. By default, we tested all common

SNPs in the region to mimic the realistic scenario where we have

relatively little information regarding which SNPs are causal, at an

established GWAS locus. To test the robustness and generalizability

of the methods, we considered two alternative testing strategies each

with a reduced set of genetic variants modeled. For the first testing

strategy, we assume prior knowledge of eQTL SNPs (union of

shared and mediator specific causal SNPs) and test only these eQTL

SNPs. On the positive side, such an approach results in a reduced

model with causal SNPs considered only. On the negative side, a

subset of causal markers (specifically, the outcome specific causal

SNPs) are not modeled. The second strategy tests SNPs with

MAF � 5%, thus missing true causal SNPs with MAF between 1

and 5%.

3 Results

3.1 Type-I error in simulations
We evaluated SMUT along with alternative methods in simulations.

SMUT manifested controlled Type-I error rates, at a ¼ 0.05 level,

regardless of causal SNP density, as shown in Figures 2 and 3 for

sparse and dense scenarios, respectively. Note that the first panel

(cb ¼ 0) and the left-most point (h ¼ 0) in other panels (cb 6¼ 0) all

correspond to the null of no mediation through the mediator.

Adapted Huang et al.’s method also showed protected Type-I error.

In contrast, Sobel test and SMR showed substantial inflation in

Type-I error, particularly when cb is large. For example,

when cb ¼ 0:2, h ¼ 0 and sparse causal SNPs, Type-I error rates for

Sobel test and SMR are 90% and 100%, respectively. Such marked

inflation in Type-I error is likely due to the more severe violation of

the assumption of no pleiotropy, made by these two methods, as cb

increases. Adapted CaMMEL also showed Type-I error inflation.

For example, among sparse causal SNPs when cb ¼ 0:2, h ¼ 0, the

Type-I error rate is 100%. We suspect such inflation is due to the

fact that CaMMEL was developed for joint testing of multiple medi-

ators via a Bayesian framework to borrow information across medi-

ators. Thus, when testing one single mediator, lack of information

in the Bayesian inference can lead to Type-I error inflation. Adapted

LASSO had severe Type-I error inflation when the causal SNPs were

dense (Fig. 3). For instance, when cb ¼ 0:05 and h ¼ 0 Type-I error

rate is 75%. This is likely due to the violation of LASSO’s sparsity

assumption (Zhao and Yu, 2006).

Assuming normality of cjðj ¼ 1; 2; . . . ;qÞ in the outcome model

may not be strictly correct when some SNPs are non-causal

(cj exactly zero) while others are causal. A mixture distribution

would be more appropriate. But our approach gives valid tests in

simulations even when the assumption may not be valid

(Supplementary Figs S1 and S2).

3.2 Power in simulations
We assessed power only for tests with protected Type-I error, name-

ly our SMUT and adapted Huang et al. SMUT demonstrated large

power gains when the causal SNPs were either sparse or dense. For

example, dense causal SNPs when cb ¼ 0:2, h ¼ 0:15, SMUT and

Fig. 2. Power and Type-I error under sparse causal SNPs scenario. The x-axis

is the true mediator effect(h) on the outcome. The y-axis is the power or Type-

I error. Sub-figures vary in cb value. cb ¼ 0 (top-left sub-figure) or h ¼ 0 (left-

most points in each sub-figure) are null settings where y-axis represents the

corresponding Type-I error. When cb 6¼ 0 and h 6¼ 0, it is under alternative hy-

pothesis and y-axis represents the corresponding power

Fig. 3. Power and Type-I error under dense causal SNPs scenario. X-axis and

y-axis are the same as in Figure 2



adapted Huang et al. had 97% and 5% power, respectively and the

power gain was 92%. Power gains appeared more profound

with increasing cb; likely because adapted Huang et al. became

very conservative when the pleiotropy effect (cb) was large. Details

and results of testing robustness of SMUT are in Supplementary

Section 3.

3.3 Real data application: METSIM dataset
The METSIM study is a population-based study with 10 197 males,

aged 45–73 years, randomly selected from the population register of

Kuopio town in eastern Finland (population 95 000) (Stancakova

et al., 2009). We analyzed genotype, gene expression and phenotype

data in the subset of 770 participants with gene expression measure-

ments from subcutaneous adipose tissue (Civelek et al., 2017). The

outcome of interest is plasma adiponectin levels. All METSIM sub-

jects participated in a 1-day outpatient visit to the Clinical Research

Unit at the University of Kuopio for data collection, which included

an interview for their medical history and a blood sample following

a 12-h fast. Plasma was measured using the Human Adiponectin

Elisa kit (LINCO Research).

Here, we tested two ‘positive control’ loci for which our previous

study (Civelek et al., 2017) provided mechanistic evidences. The first

locus was the adiponectin-associated GWAS locus ARL15 (with the

index SNP rs6450176 being an ARL15 intronic variant), where the

association might be mediated, at least in part, through altered ex-

pression of the FST gene located further (>521 kb from rs6450176)

away instead of ARL15 (Civelek et al., 2017; Martin et al., 2017).

The second locus was the ADIPOQ locus, also associated with adi-

ponectin levels.

We first extracted SNPs within 61 Mb of the corresponding

genes, ARL15 union FST and ADIPOQ union ADIPOQ-AS1 for

the two loci, respectively. In terms of phenotypic outcome, namely

adiponectin, trait levels were inverse normal transformed after

adjusting for age and BMI, following our previous work (Civelek

et al., 2017). For the first ADIPOQ locus, we tested 286 SNPs with

adiponectin association P-value <5�10�8, using SMUT, adapted

Huang et al.’s method, adapted CaMMEL, CIT, SMR and Sobel

test. Results are summarized in Table 2. Huang et al.’s method

returned no results (therefore not shown in Table 2) because it

required standardized genotype data which can be undefined for

low frequency SNPs. SMUT and SMR both showed significant me-

diation effects through ADIPOQ on adiponectin: SMUT for two

probesets and SMR for two probesets. For the second FST-ARL15

locus, we tested 366 SNPs with MAF � 1% and adiponectin associ-

ation P-values <0.01. Only SMUT detected significant mediation

effects through FST (but not ARL15) on the adiponectin. These

results suggest that our SMUT is more powerful for detecting genu-

ine mediation effects.

4 Discussion

We propose SMUT, a flexible regression-based approach that tests

the joint mediation effects of multiple genetic variants on an outcome

through a given mediator (e.g. gene). We demonstrate, through exten-

sive simulations, that SMUT preserves Type-I error rate. Our IUT ap-

proach essentially takes the maximum of the P-values from separately

testing b being zero and h being zero, with the Type-I error for the

likely more influential b part protected by the well-established SKAT

method. More stringent filtering can be applied by adopting multiple

testing adjustments such as Bonferroni or FDR correction. SMUT is

statistically more powerful than alternative methods including

adapted Huang et al.’s method, adapted LASSO, adapted CaMMEL,

Sobel test and SMR.

SMUT has several major advantages over alternative methods.

First, as a regression-based approach under the mediation analysis

framework, SMUT can distinguish mediation from pleiotropy.

Second, SMUT generalizes the framework of Baron and Kenny to

multiple genetic variants, while methods including SMR and Sobel

test can only test one single variant at a time. Third, SMUT naturally

accommodates correlation (or LD) among genetic variants while

many methods including MR-Egger assume genetic variants under

testing are uncorrelated. Fourth, SMUT enables relatively large

number of SNPs by fitting a mixed effects model, while sparse fixed

effects model (e.g. LASSO) relies on sparsity of the true causal SNPs

and may cause inflated Type-I error if violating the sparsity assump-

tion. Finally, SMUT, even its present form, can handle mediators

other than gene expression (as presented in the manuscript). For ex-

ample, molecular measurements such as chromatin spatial organiza-

tion, histone modification, transcription factor binding affinity and

protein abundance can all serve as valid mediators (Schmitt et al.,

2016; Sun et al., 2016; The GTEx Consortium, 2015; Xu et al.,

2016).

Conceptually, TWAS methods are also designed to elucidate

mechanisms regarding the mediation effects of multiple SNPs via

gene expression on phenotypic outcome. However, as previously

mentioned, TWAS is designed for scenarios where eQTL and GWAS

Table 2. Results from the METSIM study

P-values

Probesets No. of SNPs Gene SMUT Adapted CaMMEL CIT SMR Sobel test

11734558_a_at 286 ADIPOQ 0.07 0.09 1.0 0.08 0.07

11734559_x_at 286 ADIPOQ 0.01 0.09 0.54 0.03 0.07

11734560_x_at 286 ADIPOQ 0.90 0.09 1.0 0.08 1.0

11752564_x_at 286 ADIPOQ 0.04 0.09 0.89 0.03 0.27

11724032_a_at 366 FST 0.02 0.09 1.0 1.0 1.0

11732712_a_at 366 FST 0.01 0.09 1.0 1.0 1.0

11732713_at 366 FST 0.03 0.09 1.0 1.0 1.0

11731654_at 366 ARL15 1.0 0.09 1.0 1.0 1.0

11757014_a_at 366 ARL15 0.13 0.09 1.0 1.0 1.0

Note. We used SMUT and other alternative methods (adapted CaMMEL, CIT, SMR and Sobel test) to test two loci, the ARL15 locus and the ADIPOQ locus.

SNPs within corresponding genes, ARL15 union FST and ADIPOQ union ADIPOQ-AS1 for the two loci respectively, are extracted. For the ADIPOQ locus,

both SMUT and SMR showed significant mediation effects through ADIPOQ on adiponectin. For the ARL15 locus, only SMUT detected significant mediation

effects through FST (but not ARL15) on the adiponectin. The P-values are adjusted using Bonferroni correction. Numbers in bold are the P-values less than 0.05.



datasets are from two separate sets of study participants. Our SMUT

method is designed for the scenario where we have genotype, mediator

and phenotype information measured in the same study subjects.

Therefore, we have not directly compared with TWAS methods and

deem our SMUT and TWAS useful for different data scenarios.

SMUT can be further extended in several directions. It can be

extended to accommodate binary, survival or longitudinal pheno-

typic outcome, given its regression-based framework. These exten-

sions, however, are non-trivial because the outcome model will be a

generalized linear mixed model with random effects (for SNPs) that

are high dimensional, and are shared across samples unlike in stand-

ard repeated measures settings. These complexities entail the explor-

ation of Laplace approximation of the likelihood or partial

likelihood function for proper and computationally tractable testing

of theta, which we are actively pursuing and warrants separate pub-

lication. We can also extend SMUT to simultaneously model mul-

tiple mediators, which may yield improved power for testing at the

price of stronger modeling assumptions.

With more genotyping-based GWAS and large whole genome

sequencing efforts underway, the already dauntingly large number

of GWAS variants will continue to increase. Approaches generating

hypotheses on the mechanisms underlying these variants are impera-

tive. We anticipate SMUT will be a powerful tool in this post-

GWAS era to help with bridging the functional gap of GWAS, pri-

oritizing functional follow-up and disentangling the potential causal

mechanism from DNA to phenotype for a new drug discovery and

personalized medicine.
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