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ABSTRACT lIdentifying the regulatory mechanisms of genome-wide association study (GWAS) loci
affecting adipose tissue has been restricted due to limited characterization of adipose transcriptional
regulatory elements. We profiled chromatin accessibility in three frozen human subcutaneous adipose
tissue needle biopsies and preadipocytes and adipocytes from the Simpson Golabi-Behmel Syndrome
(SGBS) cell strain using an assay for transposase-accessible chromatin (ATAC-seq). We identified
68,571 representative accessible chromatin regions (peaks) across adipose tissue samples (FDR < 5%).
GWAS loci for eight cardiometabolic traits were enriched in these peaks (P < 0.005), with the strongest
enrichment for waist-hip ratio. Of 110 recently described cardiometabolic GWAS loci colocalized with
adipose tissue eQTLs, 59 loci had one or more variants overlapping an adipose tissue peak. Annotated
variants at the SNX10 waist-hip ratio locus and the ATP2A1-SH2B1 body mass index locus showed
allelic differences in regulatory assays. These adipose tissue accessible chromatin regions elucidate
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genetic variants that may alter adipose tissue function to impact cardiometabolic traits.

Dysregulation of genes expressed in adipose tissue influences cardiome-
tabolic traits and diseases. Subcutaneous adipose tissue serves as a buff-
ering system for lipid energy balance, particularly fatty acids,(Coelho
et al. 2013; Fernandez-Veledo et al. 2009; Gustafson et al. 2015)
and may play a protective role in cardiometabolic risk.(Porter et al.
2009) Subcutaneous adipose expression quantitative trait loci (eQTL)
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studies have identified genes involved in central obesity and metabolic
traits,(Emilsson et al. 2008; Zhong et al. 2010; Greenawalt et al. 2011;
Nica et al. 2011; Civelek et al. 2017) and specific cardiometabolic
genome-wide association study (GWAS) loci have been shown to
colocalize with subcutaneous adipose eQTLs.(Global Lipids Genetics
Consortium 2013; DIAbetes Genetics Replication and Meta-analysis
(DIAGRAM) Consortium et al. 2014; Shungin et al. 2015; Locke et al.
2015; Civelek et al. 2017) In addition, a recent GWAS study of waist-
hip ratio, a measure of central obesity, identified loci that were en-
riched both for putative regulatory elements in adipose nuclei and for
genes expressed in subcutaneous adipose tissue,(Shungin et al. 2015)
many of which have been linked to adipose function.(Dahlman et al.
2016) Identification and characterization of adipose tissue regula-
tory regions and variants would improve understanding of biological
processes and the mechanisms underlying cardiometabolic loci.
Adipose tissue is composed of many cell types, including adipocytes,
preadipocytes, vascular cells, immune cells, and nerve cells.(Lynes and
Tseng 2018) Characterization of heterogeneous whole adipose tissue
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and its component cell types are both needed to fully delineate the role
of adipose tissue in cardiometabolic disease. Human adipose tissue
samples can be used to identify differences in chromatin accessibility
due to genotype and link variants to cardiometabolic traits; however,
samples may also differ due to site of tissue extraction, sample handling
and storage conditions, and environmental contributions. Although
cell models do not fully replicate cells within a complex tissue, their
growth, storage, and environmental conditions can be controlled. Cells
from the Simpson Golabi-Behmel Syndrome (SGBS) human preadipo-
cyte cell strain are diploid, easy to grow in culture, can be differentiated
to mature adipocytes(Fischer-Posovszky et al. 2008) and are exposed
to less experimental variation than primary human preadipocytes
due to genotype or sample collection differences.

Adipose tissue and adipocytes are poorly represented in chromatin
accessibility datasets because the high lipid content makes experimental
assays challenging. To date, for human adipose tissue or adipocytes,
only three DNase-seq datasets(Loft et al. 2015; Schmidt et al. 2015b)
and three ATAC-seq datasets(Allum et al. 2015; ENCODE Consortium
2012) are available. In addition to chromatin accessibility, chromatin
immunoprecipitation (ChIP)-seq for histone marks have been char-
acterized in adipose nuclei from subcutaneous adipose tissue and in
differentiated adipocytes from mesenchymal stem cells (Roadmap
Epigenomics Project), and these data were integrated to annotate geno-
mic regions into chromatin states characteristic of regulatory functions
such as promoters, enhancers, or insulators.(Roadmap Epigenomics
Consortium 2015) Regions of chromatin accessibility in many cell types
are located preferentially in regulatory regions,(Roadmap Epigenomics
Consortium 2015; Scott et al. 2016) suggesting that chromatin acces-
sibility maps can improve accuracy of predicting regulatory chroma-
tin states in adipose cell types.

Chromatin accessibility data can be used to characterize candidate
variants at noncoding GWAS loci. Allelic differences have been found
in levels of accessible chromatin, transcription factor binding, and
histone marks of chromatin state,(Degner et al. 2012; Kasowski et al.
2013; Kilpinen et al. 2013; McVicker et al. 2013; Leung et al. 2015;
Kumasaka et al. 2016) and these differences have provided a functional
context for interpreting GWAS loci.(Gate et al. 2018; Astle et al. 2016;
Roman et al. 2015) Identifying transcription factor motifs and foot-
prints in accessible chromatin regions can be used to predict transcrip-
tion factor binding sites.(Varshney et al. 2017) Improved annotation
of candidate regulatory variants and candidate transcription factors
in adipose tissue could aid identification of molecular mechanisms at
GWAS loci.

In this study, we performed ATAC-seq on frozen clinical subcuta-
neous adipose tissue needle biopsy samples and SGBS preadipocytes and
adipocytes to identify regions of accessible chromatin for each sample
type. We identified cardiometabolic GWAS loci and transcription fac-
tor binding motifs in ATAC-seq open chromatin regions and used
the ATAC-seq annotations to characterize candidate variants at car-
diometabolic GWAS loci with colocalized adipose tissue eQTL associ-
ations. Finally, through experimental analysis of allelic differences in
regulatory functions, we report functional non-coding variants at two
cardiometabolic GWAS loci.

MATERIALS AND METHODS

METSIM study participants

Subcutaneous adipose tissue needle biopsies were obtained from
METabolic Syndrome in Men (METSIM) participants as previously
described.(Civelek et al. 2017) We used three adipose tissue needle
biopsy samples for ATAC-seq (Table S1). The METSIM study includes
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10,197 men, aged from 45 to 73 years, randomly selected from Kuopio,
Eastern Finland, and examined in 2005 - 2010.(Stancakova et al.
2009; Laakso et al. 2017) The Ethics Committee of the University
of Eastern Finland in Kuopio and the Kuopio University Hospital
approved the METSIM study and it was carried out in accordance
with the Helsinki Declaration. DNA samples were genotyped on the
Mumina OmniExpress and HumanCoreExome arrays and imputed
using the Haplotype Reference Consortium(McCarthy et al. 2016)
as previously described.(Civelek et al. 2017)

Sample processing and ATAC-seq library preparation
Human adipose tissue was flash frozen and stored at -80° until use. For
adipose tissue samples 1 and 3, we generated libraries using nuclei
isolation buffers that contained detergent (1% NP-40) or did not con-
tain detergent. For tissue sample 2, we generated libraries using ~12 mg
or ~36 mg of tissue and contained detergent. Replicates including de-
tergent and less tissue in library preparation resulted in a greater num-
ber of peaks and higher peak similarity between individuals compared
to no detergent (Table S11). From these observations, we performed
all subsequent analyses with the three detergent-treated replicates.
Tissue was pulverized in liquid nitrogen using a Cell Crusher homog-
enizer (cellcrusher.com). The tissue powder was resuspended in nuclei
isolation buffer (20 mM Tris-HCI, 50 mM EDTA, 60 mM KCl, 40%
glycerol, 5 mM spermidine, 0.15 mM spermine, 0.1% mercaptoethanol,
1% NP-40). Tubes were rotated at 4° for 5 min. The solution was
homogenized using a tight homogenizer (Wheaton) for 10 strokes
and was centrifuged at 1500 X g for 10 min at 4°. Following removal
of the lipid layer and supernatant, the pellet was resuspended in
buffer (10 mM Tris-HCI, 10 mM NaCl, 3 mM MgCl,) and centri-
fuged at 1200 x g for 10 min at 4°. The supernatant was removed
and the pellet was used for the transposase reaction as previously
described.(Buenrostro ef al. 2013) We used 2.5 ul Tn5 for adipose
tissue libraries. Following library PCR amplification for adipose tissue,
we removed primer dimers using Ampure Beads (Agencourt) with a
1:1.2 ratio of library to beads. Libraries were visualized and quantified
using a TapeStation or Bioanalyzer and sequenced with 50-bp reads on
an Illumina Hi-Seq 2500 at the Duke University Genome Sequencing
shared resource facility (single-end sequencing).

SGBS cells(Wabitsch et al. 2001) were generously provided by
Dr. Martin Wabitsch (University of Ulm) and cultured as previously
described.(Cannon et al. 2017) To differentiate SGBS cells, SGBS
preadipocytes were cultured in serum-containing medium until con-
fluent, then rinsed in PBS and differentiated for four days in basal
medium (DMEM:F12 + 3.3mM biotin + 1.7mM panthotenate) sup-
plemented with 0.01 mg/mL transferrin, 20 nM insulin, 200 nM cor-
tisol, 0.4 nM triiodothyronine, 50 nM dexamethasone, 500 uM IBMX,
and 2 uM rosiglitazone. After four days, differentiated SGBS cells
were maintained in basal medium supplemented with 0.01 mg/mL
transferrin, 20 nM insulin, 200 nM cortisol, 0.4 nM triiodothyronine.
We generated profiles with 50,000 cells following the Omni-ATAC
protocol(Corces et al. 2017) (Table S11). We removed primer di-
mers using Zymo DNA Clean and Concentrator, visualized and
quantified libraries using a TapeStation or Bioanalyzer, and se-
quenced with 50-bp reads on an Illumina Hi-Seq 4000 at the Uni-
versity of North Carolina High-Throughput Sequencing Facility
(paired-end sequencing).

ATAC-seq alignment and peak calling

We obtained previously published adipose ATAC-seq datasets from
subcutaneous adipose tissue (ENCODE ENCSR540BML),(ENCODE
Consortium 2012) tissue-derived adipocytes,(Allum et al. 2015) and
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GM12878 lymphoblasts.(Buenrostro et al. 2013) The tissue-derived
adipocyte ATAC-seq data were shared by the McGill Epigenom-
ics Mapping Centre and is available from the European Genome-
phenome Archive of the European Bioinformatics Institute (dataset
EGADO00001001300).

To minimize mapping differences between read length and single-
end vs. paired-end samples, we merged the mate pair fastq files and
trimmed reads to 50 nucleotides for each paired-end ATAC-seq
sample and aligned reads from all samples as single-end. We removed
sequencing adapters from raw ATAC-seq sequence reads using Tag-
dust (Lassmann et al. 2009) with a false discovery rate of 0.1% and
selected high quality reads with a Phred score of at least 20 for at least
90% of bases using the FASTX toolkit (http://hannonlab.cshl.edu/
fastx_toolkit). We aligned filtered reads to the hgl9 human genome
using bowtie2(Langmead and Salzberg 2012), penalizing ambiguous
bases as mismatches. We removed any alignments with mapping qual-
ity less than 20, mitochondrial reads, or blacklisted regions (Quinlan
2014; Karolchik et al. 2004) and shifted the resulting alignments by
+4 on the + strand and -5 on the - strand so that the 5’ base of each
alignment corresponded to the center of the binding site of the Tn5
transposase(Adey et al. 2010; Buenrostro et al. 2013). For the METSIM
adipose tissue samples, we verified sample identity using verifyBamID
(Jun et al. 2012) using genotyped variants with at least 10 ATAC-seq
reads in the sample with the lowest read depth (Tissue 2; 8,683
variants), minimum minor allele frequency of 0.01, and call rate
of at least 0.5; we used the best-matched genotypes for each sample.
For all samples, we called peaks using MACS2(Zhang et al. 2008) with
no background dataset, smoothing ATAC-seq signal over a 200 bp
window centered on the Tn5 integration site, allowing no duplicates,
and a false discovery rate (FDR)<\5%; we refer to peaks called on
reads from technical replicate samples (SGBS adipocytes, SGBS pre-
adipocytes, tissue-derived adipocytes, and GM12878 lymphoblasts)
as ‘replicate peaks’.

Representative ATAC-seq peaks

For samples with technical replicates, we pooled reads across rep-
licates and called peaks (MACS2, FDR < 5%), and then defined the
portion of these peaks that shared at least one base with a replicate
peak in two or more replicates as ‘representative peaks’. The MET-
SIM adipose tissue samples are from different individuals and are
not technical replicates. Due to a low number of samples, we used the
union of peaks across individuals as representative peaks. Unless
otherwise noted, we selected the top 50,000 representative peaks in
each group for downstream analyses. For the groups with technical
replicates and the single ENCODE adipose tissue sample, we selected
the top 50,000 representative peaks with the most significant peak
p-values. For METSIM adipose tissue, we ranked the peak p-values in
each individual (with 1 being the strongest) and used the average of
these ranks to select the top 50,000 representative peaks. This ap-
proach reduced the chance that outlier p-values from a single indi-
vidual would bias peak rank.

ATAC-seq principal component analysis

We generated a total set of accessible chromatin regions by taking
the top 50,000 peaks in each group of ATAC-seq samples. For each
ATAC-seq sample, we counted the number of non-duplicated nuclear
reads overlapping the total set of accessible chromatin regions using
featureCounts.(Liao et al. 2014) We performed library size normaliza-
tion and variance stabilization using the regularized log (rlog) function
in DESeq2.(Love et al. 2014) We performed principal component anal-
ysis (PCA) using a modified version of the DESeq2 plotPCA function.
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Peak genomic distribution and overlap with Roadmap
chromatin states

We determined the location of ATAC-seq peaks relative to genes from
the GENCODE 24lift37 Basic Set. Using BEDTools,(Quinlan 2014) we
divided peaks into the following categories: TSS-proximal (5 kb up-
stream to 1 kb downstream of a GENCODE transcription start site),
intragenic (within a gene body but not within TSS-proximal regions),
downstream (within 5 kb downstream of a transcription termination
site but not within any gene body), and distal (>5 kb from either end
of any gene). We obtained chromatin states for an 18-state model based
on ChIP-seq data for 98 cell and tissue types using 6 histone marks
(H3K4mel, H3K4me3, H3K36me3, H3K27me3, H3K9me3, and
H3K27ac) from the Roadmap Epigenomics Consortium.(Roadmap
Epigenomics Consortium 2015) We generated the following com-
bined states by merging states of similar genomic context: promoter
(1_TssA, 2_TssFInk, 3_TssFInkU, 4_TssFInkD, 14_TssBiv), transcribed
(5_Tx, 6_TxWKk), enhancer (7_EnhG1, 8_EnhG2,9_EnhAl, 10_EnhA2,
11_EnhWk, 15_EnhBiv), and polycomb repressed (16_ReprPC,
17_ReprPCWKk). Using BEDTools(Quinlan 2014) we calculated
the number of representative ATAC-seq peak bases that overlapped
each chromatin state. We ranked the ATAC-seq peak overlap of each
chromatin state in adipose nuclei (Roadmap epigenome ID E063)
relative to all other cell types, where a rank of 1 corresponds to largest
amount of overlap compared to all other cell types.

Enrichment of transcription factor motifs within
ATAC-seq peaks

We tested for enrichment of 519 transcription factor binding motifs
from the JASPAR core 2016 vertebrates database(Mathelier et al.
2016) within the top 50,000 representative peaks for adipose tissue
and GM12878 lymphoblasts using Analysis of Motif Enrichment
(AME)(McLeay and Bailey 2010). We used shuffled peak sequences
with preserved dinucleotide content as background for the enrich-
ment and the Fisher Exact Test to calculate enrichment significance.
We classified motifs with an Expect value (E) less than 1x1071%0 as
significantly enriched.

Transcription factor motif scanning and footprinting
within ATAC-seq peaks

To identify transcription factor motifs both disrupted and gener-
ated by GWAS variants, we constructed personalized reference
genomes (hg19) with the —create_reference option in the AA-ALIGNER
pipeline(Buchkovich et al. 2015) using genotypes in the adipose tissue
samples. We scanned the resulting haplotypes for 519 transcription
factor binding motifs from the JASPAR core 2016 vertebrates data-
base using FIMO.(Mathelier et al. 2016; Grant et al. 2011) If two
motifs for the same factor existed at the exact same genomic coordi-
nates and on the same strand on each haplotype, we used the motif
with the highest motif score.

We performed transcription factor footprinting for 35 transcrip-
tion factor motifs corresponding to 34 unique adipose-related tran-
scription factors (Table S8). The 34 transcription factors included
21 described as adipose core transcription factors(Saint-André et al.
2016), six dimer motifs that contained a core transcription factor,
plus CEBPA, CEBPB, CEBPD, ZEB1, SPI1, SPIB, and CTCF. For the
resulting motifs, we generated windows containing the genomic co-
ordinates of the motif and 100 bp flanking both motif edges. We
removed motif windows where fewer than 90% of bases could be
uniquely mapped or that overlapped blacklisted regions.(Karolchik
et al. 2004; Li et al. 2009; Quinlan 2014) We constructed matrices
of the number of Tn5 transpositions across the remaining motif
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windows and predicted which motifs were likely bound using
CENTIPEDE.(Pique-Regi et al. 2011) We used motif scores calcu-
lated by FIMO for CENTIPEDE priors and classified a motif with
a CENTIPEDE posterior binding probability greater than 0.99 as
bound and less than 0.5 as unbound.

Next, we determined which transcription factors exhibited an
average decrease in ATAC-seq signal across their motifs relative to
flanking regions, termed an aggregate footprint profile; we considered
these footprints to be the most robust and consistent footprints across
all motif sites. We calculated the average transposition probability
at each window position separately for bound and the top 10,000
unbound sites to obtain aggregate bound and unbound profiles,
calculated the transposition probability ratio (TPR) by dividing each
position in the bound profiles by the corresponding position in the
unbound profiles, and then calculated the average TPR across the
motifs (mTPR) and the 100 bp flanking regions (fTPR). We con-
sidered transcription factor motifs to display an aggregate footprint
profile if mTPR was less than fTPR.

Enrichment of GWAS variants in ATAC-seq peaks

We tested for enrichment of genetic variants in ATAC-seq peaks us-
ing GREGOR, which compares overlap of GWAS variants relative to
control variants matched for number of LD proxies, allele frequency,
and gene proximity.(Schmidt et al. 2015a) We selected lead variants
with a p-value less than 5x1078 from 11 trait categories from the
GWAS catalog (December 2016): type 2 diabetes, insulin, glucose,
cardiovascular outcomes, blood pressure traits, low-density lipo-
protein cholesterol (LDL-C), high-density lipoprotein cholesterol
(HDL-C), triglycerides, total cholesterol, body mass index (BMI),
and waist-hip ratio adjusted for BMI (WHR). Phenotypes included
in trait categories are listed in Table S5. Loci that were associ-
ated with multiple traits were assigned to each trait. To remove
multiple lead variants for the same association signal, we performed
LD clumping using swiss (https://github.com/welchr/swiss) with
the 1000G_2014-11_EUR LD reference; variants in moderate LD
(r? > 0.2) and within 1 Mb of a variant with a more significant
p-value were removed. We used GREGOR to test for enrichment
of the resulting GWAS lead variants or their LD proxies (r? threshold
of 0.8 within 1 Mb of the GWAS lead, 1000 Genomes Phase I) in
ATAC-seq peaks relative to control variants. We tested for enrich-
ment in the top 50,000 representative peaks for adipose tissue, SGBS
adipocytes, SGBS preadipocytes, and GM12878 lymphoblasts. En-
richment was considered significant if the enrichment p-value was
less than the Bonferroni-corrected threshold of 51073 (0.05/11 trait
groups). To compare enrichment magnitudes between regions and
traits, we calculated an enrichment z-score:

observed overlaps - expected overlaps

@ seore= standard deviation
The expected overlaps and standard deviation were estimated using
GREGOR.(Schmidt et al. 2015a) We visualized the enrichment re-
sults using the heatmap.2 function in the gplots R package.(R Core
Team 2016; Warnes et al. 2016).

Overlap of GWAS-eQTL colocalized loci with

ATAC-seq peaks

eQTL mapping in 770 subcutaneous adipose tissue samples and de-
termination of GWAS-coincident eQTLs was described previously.
(Civelek et al. 2017; Cannon et al. 2017) We identified overlap of
ATAC-seq peaks with any variant in LD (r2 > 0.8) with the GWAS
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lead variant at 110 loci (6,692 variants) using BEDTools.(Quinlan
2014) LD was calculated using the 770 METSIM individuals included
in the eQTL analysis.

Transcriptional reporter luciferase assays

SGBS preadipocyte, 3T3-L1 preadipocyte, SW872 liposarcoma, and
THP-1 monocyte cells were maintained and transcriptional reporter
luciferase assays were performed as previously described.(Cannon et al.
2017; Schick et al. 2016) 3T3-L1 preadipocytes (ATCC, CL-173) were
differentiated as described in the ATCC protocol. Table S12 contains
primers used for amplifying ATAC-seq peaks overlapping the variant
of interest. Amplified regions were inserted in pGL4.23 firefly luciferase
reporter vectors (Promega) upstream of the minimal promoter and
luciferase gene. We cloned two sizes of constructs for rs7187776 due
to a restriction enzyme site in the middle of the larger construct;
we tested both in luciferase assays. The long construct includes
part of the 3" UTR of TUFM and part of the 5" UTR of SH2BI.
Fragments containing potential enhancers are designated as ‘forward’
or ‘reverse’ based on their orientation with respect to the genome.
Regions were designed to include the entire ATAC-seq peak over-
lapping the variant of interest. Three to five independent clones
were cotransfected with Renilla luciferase vector in triplicate (SGBS,
3T3-L1 adipocytes) or duplicate (SW872, THP1, 3T3-L1 preadipo-
cytes) wells using Lipofectamine 3000 (SGBS, THP-1, Life Technol-
ogies), Lipofectamine 2000 (3T3-L1 preadipocytes and adipocytes)
or FUGENE 6 (SW872, Promega). Firefly luciferase activity of the
clones containing the PCR fragments was normalized to Renilla
luciferase readings to control for differences in transfection effi-
ciency. We repeated all luciferase transcriptional reporter experi-
ments on independent days and obtained consistent results. Data
are reported as fold change in activity relative to an empty pGL4.23
vector. We used two-sided Student’s ¢-tests to compare luciferase
activity.

Electrophoretic mobility shift assays (EMSA)

For EMSA, we prepared nuclear cell extracts from SGBS preadipocyte
and SW872 cells using the NE-PER nuclear and cytoplasmic extrac-
tion kit (Thermo Scientific) as previously described.(Kulzer et al.
2014) Double-stranded oligos (Table S12) were incubated with SGBS
preadipocyte or SW872 nuclear extract or 100 ng purified PU.1 pro-
tein (Creative Biomart SPI1-172H) and DNA-protein complex visu-
alization was carried out as previously described.(Kulzer et al. 2014)
A positive control oligo contained the PU.1 motif from JASPAR
and a negative control did not contain the motif (Table S12). We
repeated all EMSA experiments on independent days and obtained
consistent results.

Allelic imbalance

We aligned reads for the adipose tissue samples to personalized
genomes using the allele-aware aligner GSNAP allowing two mis-
matches, no indels, and treating ambiguous bases (encoded as N’s)
as mismatches.(Wu and Nacu 2010) We extracted unique align-
ments and filtered alignments to the mitochondrial genome and
blacklisted regions.(Li et al. 2009; Karolchik et al. 2004) Using
WASP,(van de Geijn et al. 2015) we removed alignments that did
not uniquely map to each allele at heterozygous sites. Allele count
pileup files were generated at heterozygous sites with a minimum
base quality Phred score of 30 to minimize the impact of sequenc-
ing errors using samtools. We removed heterozygous loci with
aligned bases other than the two genotyped alleles and selected
heterozygous sites with at least 10 total counts and at least 1 count
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Table 1 ATAC-seq alignment metrics of human adipose tissue and SGBS preadipocytes and adipocytes

Percent Remaining reads Remaining reads
Total Aligned mitochondrial Nuclear after blacklist after duplicates Number of

Sample reads reads reads alignments filtering removed peaks?
Tissue 1 129.5 87.4 8.5 80.0 79.0 70.6 58,550
Tissue 2 131.5 83.6 12.8 72.9 71.8 60.6 36,785
Tissue 3 119.3 70.5 11.9 62.2 61.3 57.1 49,962
SGBS adipocytes 12 382.6 275.9 2.1 268.6 267.7 90.4 184,455
SGBS adipocytes 22 2451 172.9 1.9 168.7 168.1 84.1 172,247
SGBS adipocytes 32 253.7 181.0 1.5 177.2 176.7 87.5 191,141
SGBS preadipocytes 12 97.3 71.8 1.0 70.8 70.7 34.6 171,279
SGBS preadipocytes 22 751 54.1 1.1 53.3 53.1 30.5 139,911

Reads are reported in millions of reads.

aSamples were sequenced using paired-end reads, but processed as single-end reads.
e identified 68,571 representative peaks across adipose tissue, 122,924 across SGBS preadipocytes, and 164,252 across SGBS adipocyte samples.

per allele. To account for residual biases, we fit allele counts to a beta-
binomial distribution with the probability of success (reference allele
ratio) and dispersion estimated using maximum likelihood separately
for each sample using the VGAM R package.(Yee 1996; R Core Team
2016) We performed two-tailed beta-binomial tests of allelic imbal-
ance using VGAM.

To confirm allelic imbalance in PU.1 binding and chromatin acces-
sibility at rs7187776 (genomic position chr16:28857645), we analyzed
public genotype, SPI1 ChIP-seq, and DNase-seq data for the GM 12891
cell line. We obtained genotypes for individual NA12891 from ftp://
ftp-trace.ncbi.nih.gov/1000genomes/. We downloaded GM12891 SPI1
ChIP-seq alignments (ENCFF450BQJ, ENCFF152ZGE) and DNase-
seq alignments (ENCFF070BAN) from ENCODE. Allele count pileup
files were generated at heterozygous sites with a minimum base quality
Phred score of 30 to minimize the impact of sequencing errors using
samtools.

Data availability
ATAC-seq reads (SGBS preadipocytes and adipocytes) and peaks
(adipose tissue, SGBS preadipocytes and adipocytes) can be accessed
from GEO: accession number GSE110734.

Supplementary tables and figures are available at FigShare: https://
doi.org/10.25387/g3.8120933.

RESULTS

Chromatin accessibility in frozen adipose tissue and
SGBS preadipocytes and adipocytes
We generated ATAC-seq open chromatin profiles from three frozen
subcutaneous adipose tissue needle biopsy samples (Table S1), two
replicates of SGBS preadipocytes, and three replicates of SGBS adi-
pocytes. In the adipose tissue samples, we generated ~56-70 million
non-duplicated nuclear reads and ~36-58 thousand peaks (FDR <
5%, Table 1, Methods). We identified 68,571 representative adipose
tissue peaks by taking the union of peaks across the three samples. We
generated a comparable number of non-duplicated nuclear reads in
the SGBS samples (~30-90 million), but identified many more peaks
(122,924 and 164,252 representative peaks for SGBS preadipocytes
and adipocytes respectively) (Table 1, Methods). The lower signal-to-
noise of adipose tissue profiles compared to cultured, largely homo-
geneous SGBS cells is expected due to the heterogeneity of whole
adipose tissue and stress resulting from sample freezing.

Using principal component analysis of ATAC-seq read counts
within representative peaks, we identified that adipose tissue, SGBS
preadipocyte, and SGBS adipocyte samples cluster into three distinct
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groups with strong within-group similarity (Figure 1A). The adipose
tissue profiles were more similar to SGBS adipocyte profiles than to
SGBS preadipocyte profiles (Figure 1A), suggesting the adipose tissue
samples contain more adipocytes than preadipocytes.

We tested for enrichment of 519 transcription factor binding motifs
from the JASPAR database in the top 50,000 representative adipose
tissue ATAC-seq peaks using AME.(Mathelier et al. 2016; McLeay
and Bailey 2010) We identified 162 significantly enriched motifs (E <
1x107199), including 41 motifs enriched in adipose tissue but not
lymphoblasts (Table S2). The set of 41 contains motifs for tran-
scription factors known to promote adipogenesis, such as CEBP
family members, STAT family members, and PPARG.(Sarjeant and
Stephens 2012)

To evaluate the distribution of ATAC-seq peaks across samples,
we examined the accessible chromatin landscape at ADIPOQ, which
encodes adiponectin, a hormone secreted by adipocytes that is not
expressed in preadipocytes.(Ambele et al. 2016; Korner et al. 2005)
Adipose tissue and SGBS adipocyte ATAC-seq peaks overlapped the
transcription start site (TSS) and parts of previously described regu-
latory elements upstream and in intron 1 of ADIPOQ that showed
increased transcriptional activity in reporter assays(Segawa et al.
2009; Qiao et al. 2005) (Figure 1B). Additionally, a strong ATAC-
seq peak downstream of ADIPOQ was present in SGBS preadipocytes,
suggesting this region may harbor preadipocyte-specific regulatory
elements. These data demonstrate that reproducible ATAC-seq
open chromatin profiles can be obtained from small amounts
(12-36 mg, one-third to two-thirds of a needle biopsy) of frozen
clinical subcutaneous adipose tissue samples and SGBS preadipo-
cytes and adipocytes.

Comparison of adipose tissue, adipocyte, and
preadipocyte open chromatin
We compared our adipose tissue and SGBS representative ATAC-
seq peaks to existing ATAC-seq datasets from tissue-derived adi-
pocytes,(Allum et al. 2015) ENCODE subcutaneous adipose tissue,
and GM12878 lymphoblasts (outgroup) using three methods. First,
principal component analysis of read counts within representa-
tive peaks shows that our adipose tissue profiles were most similar
to ENCODE adipose tissue and tissue-derived adipocyte profiles
(Figure 1A). These tissue-derived adipocyte and ENCODE adipose
tissue profiles were also more similar to SGBS adipocytes than SGBS
preadipocytes. Our adipose tissue and SGBS profiles were more sim-
ilar to existing adipocyte profiles than to GM12878 profiles.
Second, we compared the distribution of ATAC-seq peaks to
Roadmap Epigenomics Consortium chromatin states in adipose
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nuclei isolated from subcutaneous adipose tissue.(Roadmap Epige-
nomics Consortium 2015) We used the top 50,000 representative
peaks in each group of samples. For all ATAC-seq profiles, the
majority of peaks were located in adipose nuclei promoter and
enhancer states, with fewer peaks located in regions associated with
closed chromatin (heterochromatin, polycomb states; Table S3).
Our adipose tissue peaks showed the strongest overlap (40% en-
hancer, 49% promoter, 89% combined) with adipose nuclei pro-
moters and enhancers compared to all other ATAC-seq profiles
(Figure 1C, Table S3). With the exception of ENCODE adipose tissue,
enhancer coverage was consistently higher for adipose tissue and
adipocyte profiles compared to preadipocyte and GM12878 lympho-
blast profiles, whereas promoter coverage was similar between all
samples (Figure 1C, Table S3). The ENCODE adipose tissue profile
had more peak bases in regions near transcription start sites and fewer
peak bases in distal regions compared to all other profiles (Table S4),
which may reflect technical differences in sample processing.

Third, to characterize the epigenome distribution of ATAC-seq
peaks across cell types, we determined the overlap of representa-
tive peaks from each ATAC-seq group with enhancer chromatin
states from 98 Roadmap tissues and cell types including adipose
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nuclei.(Roadmap Epigenomics Consortium 2015) Adipose tissue and
tissue-derived adipocyte peaks showed the most overlap with adipose
nuclei enhancers, and SGBS adipocytes showed the 4" most overlap
with adipose nuclei enhancers compared to enhancers in other tissue
and cell types (Table S3). SGBS preadipocytes showed the most over-
lap with enhancers in fibroblast cell types, and adipose nuclei ranked
24" among all cell types. As expected, GM12878 lymphoblast peaks
showed much less overlap with adipose nuclei enhancers, consistent
with the cell type-specific nature of enhancers.(Roadmap Epigenomics
Consortium 2015) Across the three methods, our adipose tissue and
SGBS ATAC-seq profiles showed strong similarity with existing ad-
ipocyte ATAC-seq profiles and with active regulatory element chro-
matin states in adipose nuclei.

Cardiometabolic GWAS loci in ATAC-seq peaks

To identify cardiometabolic traits that may be strongly affected by
adipocyte regulatory elements, we tested for enrichment of GWAS
variants for 11 cardiometabolic trait groups (Table S5) in the top
50,000 representative ATAC-seq peaks in adipose tissue, SGBS adi-
pocytes, SGBS preadipocytes, and GM12878 lymphoblasts. Variants
at loci for four trait groups (WHR, HDL-C, cardiovascular outcomes,

-=.G3:Genes| Genomes | Genetics
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Figure 2 Cardiometabolic GWAS loci are enriched in ATAC-seq
peaks. The heatmap shows enrichment of cardiometabolic GWAS
loci (z-score) for the top 50,000 representative ATAC-seq peaks in
adipose tissue, SGBS adipocytes, SGBS preadipocytes, and GM12878
lymphoblasts. Cells with a significant p-value (P < 0.005) contain an
asterisk.

and blood pressure traits) showed significant enrichment (P <
5x1073) in adipose tissue, SGBS adipocyte, and SGBS preadipocyte
peaks (Figure 2, Table S6). WHR was the most strongly enriched
trait in adipose tissue (z-score = 8.66) and SGBS adipocyte (z-score
= 4.53) peaks, whereas blood pressure traits were most strongly
enriched in SGBS preadipocyte peaks (z-score = 4.29). Loci for
insulin traits and WHR showed stronger enrichment in adipose
tissue peaks compared to SGBS adipocyte or preadipocyte peaks,
suggesting in vivo conditions and/or non-adipocyte cell types in
adipose tissue may contribute to these traits. Loci for HDL-C, tri-
glycerides, LDL-C, and total cholesterol were significantly enriched
in SGBS adipocytes, consistent with the roles of adipocytes in lipid
storage. In contrast, loci for none of the tested traits were enriched
in GM12878 lymphoblast peaks. Our results suggest that genetic
variation in adipose tissue and adipocyte accessible chromatin re-
gions is frequently associated with several cardiometabolic traits
and that the stronger enrichment of WHR and insulin trait loci
in adipose tissue relative to adipocyte or preadipocyte peaks dem-
onstrates the importance of profiling chromatin accessibility in
tissue.

Functional evaluation of cardiometabolic GWAS
variants overlapping ATAC-seq peaks

We next identified cardiometabolic GWAS variants that overlapped
candidate regulatory elements defined by ATAC-seq peaks. We
focused on ATAC-seq peaks at a subset of 110 cardiometabolic
GWAS loci that were colocalized with gene expression quantitative
trait loci (eQTLs) in subcutaneous adipose tissue;(Cannon et al.
2017; Civelek et al. 2017) these loci consisted of 6,692 variants
(LD 2 > 0.8 with lead GWAS variants). To strengthen annotation
at these loci, we overlapped variants at these loci with all represen-
tative ATAC-seq peaks rather than the top 50,000 peaks. 147 vari-
ants at 59 loci overlapped an adipose tissue peak (Table S7). The
loci that had only one variant overlapping an adipose tissue ATAC-
seq peak are shown in Table 2; these variants are strong candidates
for functional activity at these loci. Of these 147 variants, 136 (93%)
also overlapped an SGBS adipocyte peak and 116 (79%) overlapped
both an SGBS adipocyte and preadipocyte peak. Variants that over-
lap peaks in adipose tissue and adipocytes or preadipocytes may be
more likely to act through regulatory elements present in adipo-
cytes rather than blood, immune, or other adipose tissue cell type
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Table 2 Selected variants at GWAS-eQTL colocalized loci that overlap ATAC-seq peaks

Total variants

Variant in

(> 0.8)

ATAC-seq

GWAS index
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regulatory elements. Of the 147 variants, 97 (66%) overlapped a
transcription factor (TF) motif from JASPAR.(Mathelier et al.
2016) Using a stringent definition for transcription factor foot-
prints (Methods), we identified aggregate footprint profiles for
12 of 35 tested TF motifs in adipose tissue (Figures S1-S3, Table
$8) and found that four variants overlapped a TF footprint. These
candidate functional variants, target regulatory elements, and TFs
provide a resource to investigate the mechanisms underlying cardio-
metabolic GWAS loci.

We tested variants at two loci for allelic differences in functional
regulatory assays. The first, rs1534696, was identified as a candidate
regulatory variant based on overlap with an AT AC-seq peak in adipose
tissue and tissue-derived adipocytes, but was not a candidate based on
SGBS adipocyte or preadipocyte ATAC-seq peaks or adipose pro-
moter or enhancer Roadmap chromatin state (Figure 3A). rs1534696
is located in the second intron of SNX10 (encoding sorting nexin 10),
was associated with WHR (P = 2x10~8, 3=0.027, in women)(Shungin
et al. 2015) and exhibited a colocalized eQTL for SNXI10 (P =
3.4x1071%%, 3=1.12) and CBX3 (P = 1.1x10~!3, 3=0.39) in adipose
tissue.(Civelek et al. 2017) We tested alleles of rs1534696 in a 250-bp
region encompassing the ATAC-seq peak for transcriptional differ-
ences in luciferase reporter assays using four cell types (Figure 3B,
Figure S4). In 3T3-L1 preadipocytes and adipocytes, the construct
containing rs1534696-A showed higher transcriptional activity than
rs1534696-C (P = 0.01) in both orientations (Figure 3B). Similar
trends were also observed in SW872 liposarcoma and SGBS preadi-
pocyte cells (Figure S4); this direction of effect is consistent with the
eQTL association of rs1534696-A with higher levels of SNX10 and
CBX3. In addition, rs1534696-A showed increased protein binding in
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regulatory assays are shown in Figure S4.

EMSAs using nuclear extract from SGBS preadipocytes (Figure 3C).
These data suggest that a transcriptional activator binds more strongly
to rs1534696-A and increases transcriptional activity of SNX10 and/
or CBX3, contributing to the molecular mechanism at this GWAS
locus (Figure 3D).

The second variant we tested overlapped an ATAC-seq peak in
adipose tissue, SGBS preadipocytes, SGBS adipocytes, and tissue-
derived adipocytes and a SPI1 (PU.1) ChIP-seq peak, motif and
footprint (Figure 4A). In adipose tissue sample 1, we further ob-
served an allelic imbalance in ATAC-seq reads (P = 2.90x1073):
25 reads contained rs7187776-A and 3 reads contained rs7187776-G.
rs7187776 is located near a long isoform of SH2BI (encoding SH2B
adaptor protein 1) and is in strong LD (2 > 0.8) with the lead variant
associated with BMI (rs3888190, P = 3.14x10~23, 3=0.031).(Locke
et al. 2015) This GWAS signal exhibited a colocalized eQTL for
SH2BI1 (P = 4.7x107%, 3=-0.39) and ATXN2L (P = 2.5x107!},
B=-0.34) in adipose tissue.(Civelek et al. 2017) rs7187776 is one
of 124 candidate variants based on LD (r? > 0.8) with the lead GWAS
and eQTL variants, and one of five variants that overlapped ATAC-
seq peaks at this locus (Table S7). Using EMSA, we observed allele-
specific binding of rs7187776-G to purified PU.1 protein and similar
binding using nuclear extract from SW872 cells, consistent with the
predicted motif (Figure 4B, Figure S5). We also tested alleles of
rs7187776 in a 477-bp region encompassing the ATAC-seq peak and
a smaller 186-bp region in transcriptional reporter assays (Figure 4,
Figure S5). In THP-1 monocytes, the constructs containing rs7187776-A
showed increased transcriptional activity compared to rs7187776-G
(Figure 4C). In SGBS preadipocyte, SW872 liposarcoma, 3T3-L1 pre-
adipocyte, and 3T3L-1 adipocyte cells, we observed extremely strong
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Figure 4 A variant at the ATP2A1-SH2B1 BMI
GWAS locus alters chromatin accessibility and
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transcriptional activity (>200-fold compared to background) but no
allelic differences (Figure S5); differences may have been masked by
the massive >200-fold transcription-enhancing effect of this region.
rs7187776-G is associated with decreased expression levels of SH2B1
and ATXNZL, suggesting that PU.1 or another ETS family member
may act as a transcriptional repressor at this locus. We observed fewer
ATAC-seq reads corresponding to more PU.1 binding, a direction that
has been observed less often than increased ATAC-seq reads corre-
sponding to increased transcription factor binding. (Degner et al. 2012)
We observed the same pattern in GM12891 SPI1 ChIP-seq and DNase-
seq data from ENCODE; 2 ChIP-seq reads contained rs7187776-A and
11 reads contained rs7187776-G, whereas 11 DNase-seq reads con-
tained rs7187776-A and 1 read contained rs7187776-G. Multiple ETS
family members, including PU.1, can act as transcriptional repressors,
including by recruiting histone deacetylases and DNA methyltrans-
ferases, resulting in closed chromatin, (Suzuki et al. 2006; Suzuki
et al. 2003; Kihara-Negishi et al. 2001; Yashiro et al. 2015) consistent
with rs7187776-G showing fewer ATAC-seq reads. These data suggest
that rs7187776-G increases binding of an ETS family member, and
may contribute to the molecular mechanism at the ATP2A1-SH2BI
BMI GWAS locus (Figure 4D).

Allelic imbalance in ATAC-seq reads

We looked for other examples of allelic imbalance in ATAC-seq
reads at heterozygous positions that may indicate altered chromatin
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differences in THP-1 monocytes. The geno-
mic region including part of the 3’ UTR of
TUFM and part of the 5" UTR of SH2B1 was
cloned upstream of a minimal promoter and
the luciferase gene. Dots represent the aver-
age of two technical replicates. Forward and
reverse designated with respect to the ge-
nome, so forward corresponds to left-to-right
in the image. P-values determined by Student's
ttest. EV, empty vector. (D) Summary of the
direction of effect of rs7187776-G.

accessibility. Only 387 sites showed nominal allelic imbalance (beta-
binomial P < 0.05) in at least one sample (Table S9), 6 of which
overlapped variants at GWAS-eQTL loci (Table S10). However, only
40 of 6,692 total GWAS-eQTL variants were heterozygous in at least
one adipose tissue sample and were covered by enough ATAC-seq
reads for allelic imbalance analysis, suggesting that higher read depth
and larger sample sizes that increase the chance of heterozygosity
at more eQTL and GWAS loci may enable identification of more
disease-associated loci that could mediate their effects on disease
through chromatin accessibility.

DISCUSSION

In this study, we generated ATAC-seq open chromatin profiles from
three frozen clinical adipose samples and replicate preparations of
SGBS preadipocytes and adipocytes. We identified differences be-
tween adipose tissue, preadipocyte, and mature adipocyte open
chromatin profiles, including cell-type-specific peaks at selectively
expressed promoters. Adipose tissue, SGBS adipocyte, and SGBS
preadipocyte open chromatin profiles largely overlapped Roadmap
adipose nuclei chromatin states. Transcription factor motifs and
footprints in ATAC-seq peaks overlapped GWAS variants, and GWAS
variants for several traits were enriched in AT AC-seq peaks. Finally, we
used the ATAC-seq profiles to annotate potential regulatory variants at
GWAS-eQTL colocalized loci and provided experimental evidence of
allelic differences in regulatory activity for variants at the SNX10 and
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ATP2A1-SH2BI GWAS loci. Taken together, these data are among
the deepest characterization of chromatin accessibility in adipose
tissue, adipocytes, and preadipocytes to date.

Important differences exist between adipose tissue, preadipocyte,
and mature adipocyte ATAC-seq profiles. Explanations for these dif-
ferences include cell-type composition/heterogeneity, the differentiation
state of adipocytes, the cultured nature of SGBS cells, and technical
differences of ATAC-seq data (e.g., sequencing depth). At the TSS for
ADIPOQ, we observed adipose tissue and SGBS adipocyte ATAC-seq
peaks, and downstream of ADIPOQ, we observed ATAC-seq peaks
specific to SGBS preadipocytes. The accessibility pattern of ADIPOQ
is consistent with its role in adipocyte differentiation (Schiffler et al.
1999; Yamauchi et al. 2002; Yokota et al. 2002) and a previous finding
that the ADIPOQ promoter is inaccessible until differentiation (Musri
et al. 2006). Among 98 Roadmap tissue and cell types, SGBS preadi-
pocyte ATAC-seq profiles were more similar to fibroblast-like cells and
cell lines than to adipose nuclei, and SGBS adipocytes were more sim-
ilar to adipose nuclei, reflecting differences likely due to the fibroblast-
like nature of preadipocytes. Differences between our adipose tissue
ATAC-seq profiles and the ENCODE adipose tissue data may be due
to differences in biopsy location, freezing method, storage conditions,
or library preparation.

Adipose ATAC-seq profiles provide insight into the mecha-
nisms of cardiometabolic GWAS loci. For example, we found that
GWAS variants for WHR— but not BMI—are enriched in adipose
ATAC-seq peaks. This enrichment is consistent with recent findings
that WHR loci are enriched in adipose transcriptional regulatory
elements(Shungin et al. 2015) and that BMI GWAS loci are enriched
in pathways involved in central nervous system biology.(Locke et al.
2015) We also identified enrichment of other cardiometabolic traits,
including insulin traits, lipids, and cardiovascular outcomes, high-
lighting the relevance of adipose regulatory elements for these traits.
Identifying the transcription factor(s) bound to a regulatory variant is
a challenging part of defining the molecular mechanisms underlying
cardiometabolic GWAS loci. While transcription factor footprints
better predict that a transcription factor is bound at a locus compared
to motif occurrence alone,(Pique-Regi et al. 2011) neither footprints
nor motifs identify the bound transcription factor with 100% accu-
racy, particularly when multiple transcription factors share similar
binding motifs. We successfully generated transcription factor foot-
prints for 12 transcription factor motifs (Figures S1-S3), which can be
used to identify GWAS variants that may alter transcription factor
binding. However, additional experiments are needed to confirm
the identity of transcription factors bound at loci containing these
footprints.

We described two GWAS loci for which ATAC-seq peaks helped
prioritize candidate variants. At the SNX10 WHR locus, we identified
a potentially functional variant, rs1534696, which is not located in a
predicted regulatory region based on existing chromatin state data.
1rs1534696 overlaps an ATAC-seq peak in adipose tissue and showed
allelic differences in transcriptional reporter and protein-binding as-
says. Interestingly, we observed allelic differences in protein binding in
SGBS preadipocytes, yet low transcriptional activity, similar to empty
vector, in SGBS preadipocytes and 3T3L1 cells. One possibility is that a
repressor binds in preadipocytes to prevent transcription and is then
released to activate transcription in adipocytes; additional experiments
are needed to determine the apparent differences between preadipo-
cytes and adipocytes at this locus. At the ATP2A1-SH2B1 BMI locus,
we identified a PU.1 binding motif and footprint at rs7187776, as well
as allelic imbalance in ATAC-seq reads, and confirmed the allelic dif-
ferences in PU.1 binding in vitro. PU.1 is part of the ETS family of
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transcription factors, all of which have very similar DNA binding
motifs,(Wei et al. 2010) so PU.1 may not be the specific TF bind-
ing at this locus, especially because PU.1 is expressed at very low
levels in SGBS preadipocytes, SGBS adipocytes, and isolated mature
adipocytes.(Allum et al. 2015; Schmidt et al. 2015b) Interestingly,
we observed significant allelic differences in transcriptional activity
in THP-1 monocyte cells but not in preadipocyte or adipocyte cell
types (Figure 4 and Figure S5), suggesting that this variant might
be important in non-adipocyte cells within adipose tissue. These data
provide excellent examples of how to integrate GWAS, eQTL, and
ATAC-seq data to identify functional variants at GWAS loci. Further
experiments are needed to determine if these variants are the only
functional variants at each locus, as we also observed allelic dif-
ferences in protein binding for a second variant overlapping an
ATAC-seq peak at the SH2BI locus (Figure S5B) and others have
suggested different functional variants at this locus,(Giuranna
et al. 2018; Volckmar et al. 2012) and which gene(s) are contributing
to obesity risk.

In summary, we presented ATAC-seq open chromatin profiles for
frozen adipose tissue and cultured preadipocytes and adipocytes. We
showed the utility of open chromatin profiles in multiple tissue samples
and across cell types within heterogeneous tissue. Together, these data
add to the growing understanding of gene regulation in adipose and the
complex genetic mechanisms of cardiometabolic traits and diseases.
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