482 research outputs found

    Space-borne quantum memories for global quantum communication

    Get PDF
    Global scale quantum communication links will form the backbone of the quantum internet. However, exponential loss in optical fibres precludes any realistic application beyond few hundred kilometres. Quantum repeaters and space-based systems offer to overcome this limitation. Here, we analyse the use of quantum memory (QM)-equipped satellites for quantum communication focussing on global range repeaters and Measurement-Device-Independent (MDI) QKD. We demonstrate that satellites equipped with QMs provide three orders of magnitude faster entanglement distribution rates than existing protocols where QMs are located in ground stations. We analyse how entangle- ment distribution performance depends on memory characteristics, determine benchmarks to assess performance of different tasks, and propose various architectures for light-matter interfaces. Our work provides a practical roadmap to realise unconditionally secure quantum communications over global distances with current technologies

    Experiments on the twisted vortex state in superfluid 3He-B

    Full text link
    We have performed measurements and numerical simulations on a bundle of vortex lines which is expanding along a rotating column of initially vortex-free 3He-B. Expanding vortices form a propagating front: Within the front the superfluid is involved in rotation and behind the front the twisted vortex state forms, which eventually relaxes to the equilibrium vortex state. We have measured the magnitude of the twist and its relaxation rate as function of temperature above 0.3Tc. We also demonstrate that the integrity of the propagating vortex front results from axial superfluid flow, induced by the twist.Comment: prepared for proceedings of the QFS2007 symposium in Kaza

    Unraveling the Landau's consistence criterion and the meaning of interpenetration in the "Two-Fluid" Model

    Full text link
    In this letter we show that it is possible to unravel both the physical origin of the Landau's consistence criterion and the specific and subtle meaning of interpenetration of the "two fluids" if one takes into account that in the hydrodynamic regime one needs a coarse-graining in time to bring the system into local equilibrium. That is, the fuzziness in time is relevant for the phenomenological Landau's consistency criterion and the meaning of interpenetration. Note also that we are not questioning the validity of the "Two-Fluid" Model.Comment: 8 pages, affiliation added, typos corrected, final version published in Eur. Phys. J.

    Vortex core contribution to textural energy in 3He-B below 0.4Tc

    Full text link
    Vortex lines affect the spatial order-parameter distribution in superfluid 3He-B owing to superflow circulating around vortex cores and due to the interaction of the order parameter in the core and in the bulk as a result of superfluid coherence over the whole volume. The step-like change of the latter contribution at 0.6Tc (at a pressure of 29bar) signifies the transition from axisymmetric cores at higher temperatures to broken-symmetry cores at lower temperatures. We extended earlier measurements of the core contribution to temperatures below 0.2Tc, in particular searching for a possible new core transition to lower symmetries. As a measuring tool we track the energy levels of magnon condensate states in a trap formed by the order-parameter texture.Comment: 13 pages, 10 figures, submitted to proceedings of the QFS2010 conferenc

    The stable isotope composition of organic and inorganic fossils in lake sediment records: current understanding, challenges, and future directions

    Get PDF
    This paper provides an overview of stable isotope analysis (H, C, N, O, Si) of the macro and microscopic remains from aquatic organisms found in lake sediment records and their application in (palaeo)environmental science. Aquatic organisms, including diatoms, macrophytes, invertebrates, and fish, can produce sufficiently robust remains that preserve well as fossils and can be identified in lake sediment records. Stable isotope analyses of these remains can then provide valuable insights into habitat-specific biogeochemistry, feeding ecology, but also on climatic and hydrological changes in and around lakes. Since these analyses focus on the remains of known and identified organisms, they can provide more specific and detailed information on past ecosystem, food web and environmental changes affecting different compartments of lake ecosystems than analyses on bulk sedimentary organic matter or carbonate samples. We review applications of these types of analyses in palaeoclimatology, palaeohydrology, and palaeoecology. Interpretation of the environmental ‘signal’ provided by taxon-specific stable isotope analysis requires a thorough understanding of the ecology and phenology of the organism groups involved. Growth, metabolism, diet, feeding strategy, migration, taphonomy and several other processes can lead to isotope fractionation or otherwise influence the stable isotope signatures of the remains from aquatic organisms. This paper includes a review of the (modern) calibration, culturing and modeling studies used to quantify the extent to which these factors influence stable isotope values and provides an outlook for future research and methodological developments for the different examined fossil groups

    Association of Visual Impairment with Risk of Incident Dementia in a Women's Health Initiative Population

    Get PDF
    Importance: Dementia affects a large and growing population of older adults. Although past studies suggest an association between vision and cognitive impairment, there are limited data regarding longitudinal associations of vision with dementia. Objective: To evaluate associations between visual impairment and risk of cognitive impairment. Design, Setting, and Participants: A secondary analysis of a prospective longitudinal cohort study compared the likelihood of incident dementia or mild cognitive impairment (MCI) among women with and without baseline visual impairment using multivariable Cox proportional hazards regression models adjusting for characteristics of participants enrolled in Women's Health Initiative (WHI) ancillary studies. The participants comprised community-dwelling older women (age, 66-84 years) concurrently enrolled in WHI Sight Examination (enrollment 2000-2002) and WHI Memory Study (enrollment 1996-1998, ongoing). The study was conducted from 2000 to the present. Exposures: Objectively measured visual impairment at 3 thresholds (visual acuity worse than 20/40, 20/80, or 20/100) and self-reported visual impairment (determined using composite survey responses). Main Outcomes and Measures: Hazard ratios (HRs) and 95% CIs for incident cognitive impairment after baseline eye examination were determined. Cognitive impairment (probable dementia or MCI) was based on cognitive testing, clinical assessment, and centralized review and adjudication. Models for (1) probable dementia, (2) MCI, and (3) probable dementia or MCI were evaluated. Results: A total of 1061 women (mean [SD] age, 73.8 [3.7] years) were identified; 206 of these women (19.4%) had self-reported visual impairment and 183 women (17.2%) had objective visual impairment. Forty-two women (4.0%) were ultimately classified with probable dementia and 28 women (2.6%) with MCI that did not progress to dementia. Mean post-eye examination follow-up was 3.8 (1.8) years (range, 0-7 years). Women with vs without baseline objective visual impairment were more likely to develop dementia. Greatest risk for dementia was among women with visual acuity of 20/100 or worse at baseline (HR, 5.66; 95% CI, 1.75-18.37), followed by 20/80 or worse (HR, 5.20; 95% CI, 1.94-13.95), and 20/40 or worse (HR, 2.14; 95% CI, 1.08-4.21). Findings were similar for risk of MCI, with the greatest risk among women with baseline visual acuity of 20/100 or worse (HR, 6.43; 95% CI, 1.66-24.85). Conclusions and Relevance: In secondary analysis of a prospective longitudinal cohort study of older women with formal vision and cognitive function testing, objective visual impairment appears to be associated with an increased risk of incident dementia. However, incident cases of dementia and the proportion of those with visual impairment were low. Research is needed to evaluate the effect of specific ophthalmic interventions on dementia.

    Significant out-of-sample classification from methylation profile scoring for amyotrophic lateral sclerosis

    Get PDF
    We conducted DNA methylation association analyses using Illumina 450K data from whole blood for an Australian amyotrophic lateral sclerosis (ALS) case–control cohort (782 cases and 613 controls). Analyses used mixed linear models as implemented in the OSCA software. We found a significantly higher proportion of neutrophils in cases compared to controls which replicated in an independent cohort from the Netherlands (1159 cases and 637 controls). The OSCA MOMENT linear mixed model has been shown in simulations to best account for confounders. When combined in a methylation profile score, the 25 most-associated probes identified by MOMENT significantly classified case–control status in the Netherlands sample (area under the curve, AUC = 0.65, CI95% = [0.62–0.68], p = 8.3 × 10−22). The maximum AUC achieved was 0.69 (CI95% = [0.66–0.71], p = 4.3 × 10−34) when cell-type proportion was included in the predictor

    Variation with mass of B(E3;01+→31-) transition rates in A=124-134 even-mass xenon nuclei

    Get PDF
    B(E3;01+→31-) transition matrix elements have been measured for even-mass Xe124-134 nuclei using subbarrier Coulomb excitation in inverse kinematics. The trends in energy E(3-) and B(E3;01+→31-) excitation strengths are well reproduced using phenomenological models based on a strong coupling picture with a soft quadrupole mode and an increasing occupation of the intruder h11/2 orbital

    Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction

    Full text link
    We investigate the matter rogue wave in Bose-Einstein Condensates with attractive interatomic interaction analytically and numerically. Our results show that the formation of rogue wave is mainly due to the accumulation of energy and atoms toward to its central part; Rogue wave is unstable and the decay rate of the atomic number can be effectively controlled by modulating the trapping frequency of external potential. The numerical simulation demonstrate that even a small periodic perturbation with small modulation frequency can induce the generation of a near-ideal matter rogue wave. We also give an experimental protocol to observe this phenomenon in Bose-Einstein Condensates
    corecore