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Significant out-of-sample classification from methylation
profile scoring for amyotrophic lateral sclerosis
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We conducted DNA methylation association analyses using lllumina 450K data from whole blood for an Australian amyotrophic
lateral sclerosis (ALS) case—control cohort (782 cases and 613 controls). Analyses used mixed linear models as implemented in the
OSCA software. We found a significantly higher proportion of neutrophils in cases compared to controls which replicated in an
independent cohort from the Netherlands (1159 cases and 637 controls). The OSCA MOMENT linear mixed model has been shown
in simulations to best account for confounders. When combined in a methylation profile score, the 25 most-associated probes
identified by MOMENT significantly classified case-control status in the Netherlands sample (area under the curve, AUC = 0.65,
Clyse, = [0.62-0.68], p = 8.3 X 10~ 2?). The maximum AUC achieved was 0.69 (Clsse, = [0.66-0.71], p = 4.3 x 10—>*) when cell-type

proportion was included in the predictor.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative
disease characterized by progressive muscle weakness and
degeneration of upper and/or lower motor neurons in the central
nervous system. Clinical heterogeneity in presentation of ALS'
may reflect a complex disease etiology, with considerable genetic
contribution even among the >90% of cases that present without
a strong family history of ALS."? A lower bound for the genetic
contribution is given by the proportion of variance associated with
common single-nucleotide polymorphisms (SNPs) genome-wide,
the SNP-based heritability estimated as 8.5% (Clgso, = [7.5-9.5]) in
Europeans® and 15% (Clgse, = [8-22]) in East Asians.* Epidemiolo-
gical studies have also identified environmental and occupational
risk factors, such as metal and pesticide exposure® and defense
force occupation,®” but generally studies are underpowered.?
Hence, lifetime environmental exposures paired with genetic
susceptibility likely contribute to an increased risk for ALS.

DNA methylation (DNAm), which in mammals is almost
exclusively found in cytosine-guanine dinucleotides (CpG), is a
widely studied epigenetic modification. Aberrant DNAm patterns

can be consequence of environmental exposures, and/or cause or
consequence of disease, and have been hypothesized to play a
role in neurodegenerative diseases (including ALS).°"? Indeed, a
methylome-wide association study (MWAS) has suggested that
neurodegenerative processes in ALS may be associated with
DNAm alterations.” In this study, the authors interrogated the
methylation status of genome-wide CpG loci in postmortem spinal
cord tissue. Despite the very small sample size (12 ALS subjects
and 11 age and gender-matched neurologically normal controls),
the authors reported 4261 significant differentially methylated
positions (DMPs), annotated to 3574 genes. Functional enrichment
analyses showed these genes to be highly enriched in biological
functions related to immune and inflammation response. How-
ever, the presence of confounding factors, and failing to account
for these confounders, has been widely recognized as a concern in
MWAS,'* because they could lead to spurious association results.
For example, Figueroa-Romero et al.'® did not account for the
potential confounding of cell-type composition, as there is
evidence that these explain much of the observed variability in
DNAm.'>'® Nonetheless, identification of DMPs across the

"Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia. 2University of Exeter Medical School, Royal Devon & Exeter Hospital, Exeter,
Devon EX2 5DW, UK. Australian Centre for Precision Health, University of South Australia Cancer Research Institute, School of Health Sciences, University of South Australia,
Adelaide, SA 5001, Australia. “Centre for Motor Neuron Disease Research, Macquarie University, Sydney, NSW 2109, Australia. *Brain Center Rudolf Magnus, University Medical
Center Utrecht, Utrecht 3584 CG, Netherlands. °Mater Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia. ’Queensland Brain Institute, The University
of Queensland, Brisbane, QLD 4072, Australia. ®Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 8AF, UK. “Australian Translational
Genomics Centre, Queensland University of Technology, Brisbane, QLD 4102, Australia. %The Centre for Medical Research, Faculty of Health and Medical Sciences, The University
of Western Australia, Nedlands, WA 6009, Australia. '"Harry Perkins Institute of Medical Research, QEll Medical Centre, Nedlands, WA 6009, Australia. '*Centre for Healthy Brain
Ageing, School of Psychiatry, University of New South Wales, Sydney, NSW 2031, Australia. '*Neuroscience Research Australia Institute, Randwick, NSW 2031, Australia.
"Neuropsychiatric Institute, The Prince of Wales Hospital, University of New South Wales, Randwick, NSW 2031, Australia. '*The Australian Institute for Bioengineering and
Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. '®Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4019, Australia. '’Fiona
Stanley Hospital, Perth, WA 6150, Australia. '®The University of Notre Dame Australia, Fremantle, WA 6160, Australia. '°Institute for Inmunology and Infectious Diseases, Murdoch
University, Perth, WA 6150, Australia. >°Calvary Health Care Bethlehem, Parkdale, VIC 3195, Australia. 2’ ANZAC Research Institute, Concord Repatriation General Hospital, Sydney,
NSW 2139, Australia. *’Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD 4029, Australia. **Discipline of Pathology and Department of
Neuropathology, Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia. *“These authors contributed equally: Jian Yang, lan P. Blair, Allan F. McRae, Naomi
R. Wray. *email: Naomi.wray@uq.edu.au

npj nature partner

Published in partnership with CEGMR, King Abdulaziz University journals


http://orcid.org/0000-0002-9545-5889
http://orcid.org/0000-0002-9545-5889
http://orcid.org/0000-0002-9545-5889
http://orcid.org/0000-0002-9545-5889
http://orcid.org/0000-0002-9545-5889
http://orcid.org/0000-0002-5981-1911
http://orcid.org/0000-0002-5981-1911
http://orcid.org/0000-0002-5981-1911
http://orcid.org/0000-0002-5981-1911
http://orcid.org/0000-0002-5981-1911
http://orcid.org/0000-0001-5608-2293
http://orcid.org/0000-0001-5608-2293
http://orcid.org/0000-0001-5608-2293
http://orcid.org/0000-0001-5608-2293
http://orcid.org/0000-0001-5608-2293
http://orcid.org/0000-0001-6319-9473
http://orcid.org/0000-0001-6319-9473
http://orcid.org/0000-0001-6319-9473
http://orcid.org/0000-0001-6319-9473
http://orcid.org/0000-0001-6319-9473
http://orcid.org/0000-0003-2282-5049
http://orcid.org/0000-0003-2282-5049
http://orcid.org/0000-0003-2282-5049
http://orcid.org/0000-0003-2282-5049
http://orcid.org/0000-0003-2282-5049
http://orcid.org/0000-0001-6840-072X
http://orcid.org/0000-0001-6840-072X
http://orcid.org/0000-0001-6840-072X
http://orcid.org/0000-0001-6840-072X
http://orcid.org/0000-0001-6840-072X
http://orcid.org/0000-0003-0538-8211
http://orcid.org/0000-0003-0538-8211
http://orcid.org/0000-0003-0538-8211
http://orcid.org/0000-0003-0538-8211
http://orcid.org/0000-0003-0538-8211
http://orcid.org/0000-0002-9595-3220
http://orcid.org/0000-0002-9595-3220
http://orcid.org/0000-0002-9595-3220
http://orcid.org/0000-0002-9595-3220
http://orcid.org/0000-0002-9595-3220
http://orcid.org/0000-0002-1388-2108
http://orcid.org/0000-0002-1388-2108
http://orcid.org/0000-0002-1388-2108
http://orcid.org/0000-0002-1388-2108
http://orcid.org/0000-0002-1388-2108
http://orcid.org/0000-0003-4310-7572
http://orcid.org/0000-0003-4310-7572
http://orcid.org/0000-0003-4310-7572
http://orcid.org/0000-0003-4310-7572
http://orcid.org/0000-0003-4310-7572
http://orcid.org/0000-0003-0912-2146
http://orcid.org/0000-0003-0912-2146
http://orcid.org/0000-0003-0912-2146
http://orcid.org/0000-0003-0912-2146
http://orcid.org/0000-0003-0912-2146
http://orcid.org/0000-0003-2001-2474
http://orcid.org/0000-0003-2001-2474
http://orcid.org/0000-0003-2001-2474
http://orcid.org/0000-0003-2001-2474
http://orcid.org/0000-0003-2001-2474
http://orcid.org/0000-0001-7421-3357
http://orcid.org/0000-0001-7421-3357
http://orcid.org/0000-0001-7421-3357
http://orcid.org/0000-0001-7421-3357
http://orcid.org/0000-0001-7421-3357
https://doi.org/10.1038/s41525-020-0118-3
mailto:Naomi.wray@uq.edu.au
www.nature.com/npjgenmed

npj

M.F. Nabais et al.

genome that may drive or be driven by ALS pathogenic processes
remains of importance, especially for biomarker development.

Confounders in the context of DNAm studies need careful
consideration. Some confounders such as sex and technical batch
effects are usually recorded and can be modeled as covariates.
However, other recognized lifestyle confounders may exist, but
may not be recorded. Furthermore, there could be confounders
that are present, but unknown. Some case-control DNAm
differences, driven by cell-type composition, or changes due to
environmental exposures, medications, or complications of the
disease, may be considered confounders, or alternatively, may be
considered of primary interest depending on the context of the
scientific question. Some unmeasured confounders can be
inferred from DNAm reference-based classification methods, for
example the Horvath age predictor or the Houseman algorithm to
predict cell-type proportions (CTP).">'” However, predicted
confounders have inherent classification error, and may only
explain a proportion of the variation attributable to the directly
measured covariates, which may result in inflated test statistics
due to the uncaptured variation of confounders.'”® More
importantly, recent studies show that correction approaches
(e.g., principal component analysis) widely used in standard
MWAS and association studies of other molecular phenotypes
may induce bias, which persists for large sample sizes and
replicates out-of-sample."”

The OmicS-data-based Complex trait Analysis (OSCA) software'®
implements mixed linear model (MLM) approaches: MLM-based
omics association (MOA) and multi-component MLM-based omics
association excluding the target (MVOMENT). MOA and MOMENT
analyses account for trait-associated probes that are highly
correlated with other trait-associated probes across the genome,
and assume effect sizes are drawn from a normal distribution.
MOA assumes a single distribution of effects sizes, while MOMENT
allows a different effect size distribution for the most-associated
probes. Fewer trait-associated probes are identified in MOA and
MOMENT analyses compared to linear regression, but simula-
tions'® show that probes that are significantly associated from
these analyses are more likely to be true positives. Briefly, the
MOA method fits a random genome-wide DNAm factor per
person with variance-covariance matrix (the omics relationship
matrix or ORM) between individuals built from genome-wide
DNAm sites (equivalent to a model of fitting all DNAm sites as
random effects); this model is analogous to the MLM association
method implemented in EMMAX?® and GCTA?' for SNP data.
Extensive simulations showed high false-positive rate (FPR) in
standard linear regression MWAS, while both MOA and MOMENT
controlled for false discovery with little loss of power.'® However,
in some scenarios, the more stringent MOMENT method is needed
to control the FPR if a proportion of DNAm sites are much more
correlated than the others, at the cost of slightly reduced power.
The MOMENT method fits an MLM with two random-effect
components for each probe tested (and hence two ORMs
between subjects computed from two sets of DNAm sites), with
the DNAm sites grouped by their associations with the trait
(leaving out the DNAm sites in a window around the target probe
being tested for association to avoid proximal contamination).'®
Hence, the MOMENT method is more likely to identify DNAmM
differences that have a specific role in disease rather than reflect
factors that impact multiple DNAm sites across the genome.

In this study, we applied both the MOA and MOMENT methods
to a disease trait (ALS) and compared results with standard linear
regression methods. We identified significant differences in
predicted immune CTP and one significantly DMP between cases
and controls. We used the estimated effect sizes of all DNAm sites,
using best-linear unbiased prediction (BLUP) to calculate indivi-
dual DNA methylation profile scores (MPS) in an independent ALS
sample. The MPS classified ALS case-control status with area
under the curve (AUC) of 0.61, Clgse, = [0.58-0.63], p=5.6x10""".
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The classification accuracy increased when the effects associated
with predicted immune CTP were included (AUC = 0.69, Clgso, =
[0.66-0.71], p=43x 107>

RESULTS

Differences in predicted cell type proportions between ALS cases
and controls

There is accumulating evidence for an active role of immune cells,
and inflammation in general, on neurodegenerative disorders
(both as cause and consequence of disease).*>** Hence, our first
analysis was to investigate differences in predicted CTP between
cases and controls. We used the Houseman algorithm based on
purified cell types from whole blood'” to estimate blood CTP for
each individual based on the DNAm data. Using stepwise
backward logistic regression models, increased neutrophil propor-
tions were found to be significantly associated with ALS, after
Bonferroni correction (OR = 1.02, Clgse, = [1.01-1.04], p=6x 104
(Fig. 1). In the Netherlands (NL) sample, the pattern of differences
in CTP was similar to that of the Australian (AU) sample, and with
its larger sample size neutrophils (OR = 1.11, Clgse, = [1.09-1.13],
p=22x102%), monocytes (OR=1.29, Clgso, = [1.22-1.36], p =
33x10 %, B lymphocytes (OR=1.12, Clgsy, =[1.08-1.16], p =
4.1x 107", and natural killer cells (OR = 1.06, Clgso, = [1.03-1.1],
p=3.1x10") were all significantly associated with ALS (Fig. 1).

DNA MWAS analysis

MWAS results show that under an MLM framework the number of
significant DMPs is much reduced, compared to the standard
linear regression models (Fig. 2a). At a Bonferroni corrected
genome-wide significance threshold of p=3.1x 107, the num-
ber of DMPs passing significance are 476 in a linear model without
any covariates; 30 in a linear model with the first 10 PCs,
calculated from the ORM as fixed effects added to the model as
covariates; 12 in MOA, and 1 in MOMENT (top to bottom row of
Fig. 2a, respectively). The genomic inflation factor, A (the median
of x? test statistics of all DNAm sites divided by its expected value
under the null), is better controlled using MOA and MOMENT
compared to the linear regression models (Fig. 2b). The
significance of almost all MOA-identified DNAm sites is reduced
in MOMENT (Table 1, Fig. 3a), with the exception of cg04104695
annotated to gene CXXC5. However, MOA and MOMENT regres-
sion coefficients of DNAm sites with p from MOA <5x 10 * (m =
241) are still highly correlated (Fig. 3b, 1, = 0.81, s.e. = 0.03).
Interestingly, the correlation of effect sizes is much higher
between standard linear regression models and MOA (Supple-
mentary Fig. 1, #, =1, se.=3x10 ) than with MOMENT
(h, = —0.2, s.e.=0.02), when considering probes that are
significant from the linear regression model. From simulations,
MOMENT analyses have been shown to be more powerful in
controlling for potential confounders, with a caveat of a slight loss
of power.'® In a previous MWAS analysis of lung function it could
be shown that the probes associated with smoking, a confounder
not included in the analysis, could explain the probes significantly
associated in MOA, but not MOMENT analysis.'”® Hence, the
difference between the number of significant DMPs found by
MOA or MOMENT could reflect a small difference in power for
detection of true positives, or a higher number of false positives in
MOA.

The NL cohort was available to us to seek replication of our
DMP. Of the 101 top DNAm sites (suggestive p <5x 10 %) in the
AU MOMENT analysis, 94 were available in the NL sample;
however, none replicated at p <0.05/94, i.e. 5.3x 10 * (Supple-
mentary Fig. 2a). Post hoc power calculations (Supplementary Fig.
2¢, d) show that the replication sample size necessary to detect a
true association based on the estimated effect size of the most-
associated probe (i.e., cg04104695) would be 3478 (assuming a
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Fig. 1 Predicted proportions of cell types estimated with the Houseman algorithm, which are based on methylation values of purified
cell types from a whole-blood sample. Methylation-derived predicted cell proportions in % (y-axis) for different cell types (x-axis) in the
Australian ALS case—control cohort (Neases =613 and Neontrols = 782, red colored boxplots) and in the Netherlands ALS case-control cohort
(Neases = 1159 and Ncontrols = 637, blue colored boxplots). Gray—controls, orange—cases. P values are from stepwise logistic regression models
(Methods) and indicate cell types significantly associated with case-control status, after Bonferroni correction. P values in red correspond to
the AU ALS cohort and p values in blue correspond to the NL ALS cohort. The boxplot horizontal black line marks the median CTP value in that
group. The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends from
the hinge to the largest value no further than 1.5 IQR from the hinge (where IQR is the inter-quartile range, or distance between the first and
third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 IQR of the hinge. Data beyond the end of the

whiskers are called “outlying” points and are plotted individually.

balanced design, 80% power and replication significance thresh-
old p=53x10"". Hence, the lack of replication of individual
probes may reflect lack of power. Consistent with this conclusion,
we found the effect sizes of MOMENT results for the AU and NL
samples for these 94 probes were correlated (Supplementary Fig.
2b, 7, = 0.33, s.e.=0.2).

Proportion of variance associated with genome-wide DNAm sites

To provide quantitative description of the relationship between
case-control status and DNAm covariates, we estimated the
proportion of variation in case—control status captured by
genome-wide DNAm (5?) by OREML (see Methods) using probe
values corrected for known potential confounders. This approach
parallels estimation of SNP-based heritability,>* except that SNP-
based heritability represents the variance attributable to genome-
wide SNPs and so has an inference of association through
causality. In contrast, with DNAm (or other molecular phenotypes)
the p? estimate could reflect both causes and consequences of
disease (including consequences of medication). Therefore, it is
not appropriate to transform this estimate to the liability scale (as
is done for SNP-based heritability estimates). The estimate must
be interpreted as dependent on the proportion of cases in the
sample (which influences the phenotypic variance on this scale),
and hence we report both p? and phenotypic variance (6,%) (since
phenotypic variance is reduced by inclusion of covariates) to aid
interpretation of results. In the baseline model with no covariates,
0} =0.247 and p? =15% (Table 2), and G} simply binomial
variance given the proportion of the sample that are cases. A
model with confounder covariates (predicted age + sex + smok-
ing score + batch effects) gave p?> =17% (63 = 0.227, 92% of
baseline 62). A model with predicted CTP as fixed effects gives a

Published in partnership with CEGMR, King Abdulaziz University

higher p? = 24% (6% = 0.237, 96% of baseline 63). A model with
both the confounder covariates and predicted CTP as covariates
gave p? = 31% (63 = 0.221, 89% of baseline &3).

Out-of-sample classification using DNA methylation profiles scores
(MPS)
Out-of-sample classification provides independent evidence that
differences in DNAm between cases and controls reflect
differences associated with disease status rather than technical
confounding effects, as the latter are less likely to be shared
between independently collected and processed samples. It can
also leverage DNAm differences between cases and controls that
do not achieve statistical significance. MPS were calculated for
each individual in the NL sample as the sum of DNAm probe
values weighted by their effect sizes estimated in the AU sample
(Supplementary Fig. 3). Figure 4 summarizes the maximum AUC
given by each of the different methods used to calculate MPS.
The BLUP model provides jointly estimated effect sizes for each
probe, but assumes probe effect sizes are drawn from a normal
distribution. The AUC for AU as discovery cohort and NL as target
was 0.61 (Supplementary Fig. 4, Clgse, =[0.58-0.63], p=5.6 X
107", p from logistic regression model). We also assessed the
effect on classification accuracy of MPS derived from estimated
effect sizes (from OREML) attributed to each CTP. Indeed, CTP-
derived MPS alone were a better classifier than BLUP scores
(Supplementary Fig. 4, AUC = 0.66, Clgse, = [0.63-0.69], p =6.5 X
107%9). Classification efficacy was further increased when both
BLUP-derived DNAm effect sizes and CTP effect sizes were used
together to calculate the MPS (Supplementary Fig. 4, AUC = 0.69,
Close, = [0.66-0.71], p =4.3x 10>

npj Genomic Medicine (2020) 10
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Fig.2 Manhattan and QQ plots of MWAS using linear or mixed linear regression models, for the Australian ALS samples (N ,ses = 613 and
N ontrols = 782). a From top to bottom row: Manhattan plots using linear regression, linear regression with 10 principal components calculated
from the ORM as fixed effects, MOA, and MOMENT. Red circles represent probes with p < 1 x 10" >; red crosses represent probes with p < 3.1 x
1077 genome-wide significant threshold. Solid dark blue line mark p <3.1x 1077 and dashed sky-blue line marks p<1x 107>, b QQ-plots
showing the expected and observed —log(p) in each model. We calculated the genomic inflation factor (A) as the median of y* test statistics of
all probes divided by its expected value under the null. Ajinear = 1.19, Alinear with pcs = 1.1, Amoa = 1.01, Amoment = 1.02.

Table 1. DNA methylation sites significantly associated with ALS at p<3.1x 10 7 from MOA and MOMENT in the Australian cohort.

Chr Probe bp Gene Orientation b_MOA p_MOA b_MOMENT p_MOMENT
4 cg08422863 88379498 HERC6 R —0.16 59x10° —0.07 0.01

13 cg05380910 38989909 STOML3 F 0.15 9.8x10° 0.06 0.04

3 €g24866706 96619630 RPL18AP8;MTRNR2L12 R 0.15 21x10°8 0.04 0.09

3 cg27143246 169771795 MYNN;RP11—-816J6.3 R —0.15 24x10°8 —0.05 0.07

12 cg00178984 59697390 SLC16A7 R 0.15 58x10 8 0.06 0.02

8 €g26078251 124300968 RP11-383J24.2 F 0.15 65x10°8 0.05 0.06

8 cg20134271 124483581 RNF139 R 0.15 82x10 8 0.04 0.13

7 cg05303559 158719689 AC019084.7 F 0.14 1.5%x 107 0.03 0.35

5 cg04104695 139679164 CXXC5 R —0.14 27x1077 —0.14 21 %1077
6 cg12785183 166031972 — F 0.14 27x1077 0.01 0.9

11 921836562 128868867 KCNJ1 R 0.14 29%1077 0.05 0.08

11 cg07613278 43311777 API5 F —0.14 3x10°7 —0.03 0.2

Chr chromosome number, Probe probe identification number as provided by Illumina, bp base pair position in the genome, Gene closest genes the probe is
annotated to, based on distance to transcription starting site, following the method described elsewhere,** Orientation DNA strand orientation, F forward, R
Reverse, b_MOA effects sizes (increase (positive sign) or decrease (negative sign) of methylation between cases and controls per standard deviation unit) of AU
MOA, p_MOA ps of MOA models for AU, b_ MOMENT effects sizes (interpreted as b_MOA) of AU MOMENT, p_ MOMENT ps of AU MOMENT.
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Fig.3 MWAS results from MOA and MOMENT show high correlation of effect sizes in the Australian ALS cohort. a —log10(p) of all probes
in MOA (x-axis) and MOMENT (y-axis), for the AU ALS dataset. Dashed blue lines mark the genome-wide significance threshold (p = 3.1 x 1077)

of MOA and MOMENT. Red dots mark all probes with p <5x10™* from MOA (m = 241) as in b. Effect sizes of MOA (x-axis) and MOMENT

(y-axis), for AU ALS dataset, of probes with p <5x 10~* from MOA. Correlation of effect sizes: 7, = 0.81 = 0.81, s.e.= 0.03.

Table 2. Proportion of phenotypic variance captured by all DNAm
sites (p?) and phenotypic variance (63) estimated from different
OREML models.

OREML model (y = Cp+ Wu +e) p? (s.e) 63 (s.e)

No covariates 15% (0.05) 0.247 (0.01)
With predicted age + predicted smoking 17% (0.06) 0.227 (0.01)
score + sex + batch effects

With predicted cell proportions 24% (0.06) 0.237 (0.01)
With predicted age + predicted smoking 31% (0.08) 0.221 (0.01)

score + sex + batch effects + predicted cell
proportions

s.e. standard error. In the absence of covariates 63 = P(1 — P), where P is the
proportion of the sample that are cases.

Finally, we used out-of-sample classification to gain insight
about the results from the linear regression vs MOA vs MOMENT
analyses (Supplementary Table 1). MPS based on MOA estimated
effect sizes from AU as discovery sample to NL as target sample
gave maximum AUC =0.60 (Clgse, =[0.57-0.63], p=2.7 X 1079,
using all probes with p < 0.5 (m = 74,556). However, MPS based on
MOMENT results gave higher AUC for all p value thresholds tested,
despite fewer probes passing each significance threshold. The
maximum MOMENT AUC was 0.65 (Clgse, = [0.62-0.68], p = 8.3 X
1072%) with probes with p<1x10™* (m=25). A model that
included MPS calculated with MOMENT-derived effect sizes and
CTP effect sizes gave AUC =0.67 (Clgso, = [0.65-0.70], p =2.2 X
107%°). We note a negative correlation between MOA and
MOMENT MPS, despite high correlation of effect sizes (Supple-
mentary Fig. 5). Based on simulations, Zhang et al.'® found this
property to be induced when non-causal probes were included in
the calculation of MPS. For causal probes in simulations, the MOA
and MOMENT-based classifiers were strongly positively correlated.

Based on the DNAm profile scoring analyses we concluded that
the MOMENT analyses are more likely to have identified true
positive associations, AUC = 0.65 from 25 probes (Supplementary
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Methylation Profile Score method
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Fig. 4 Maximum AUC given by the different methods used to
calculate MPS, when classifying from the Australian (N ,5.s =613,
Ncontrols = 782) to the Netherlands (N. ses = 1159 and N gntrols =
637) ALS cohort. Bars indicate 95% confidence intervals of AUC
values for each method. MOA: Clgs, = [0.57-0.63]; BLUP: Clgso, =
[0.58-0.63]; MOMENT: Clgso, = [0.62-0.68]; predicted cell proportions
(CTP): Clgso, = [0.63-0.69]; MOMENT + CTP: Clgse, = [0.65-0.7]; and
BLUP + CTP: Clgse, = [0.66-0.71]. Dashed line indicates AUC =0.5,
i.e, random classification. P values are from logistic regression
models. m = number of DNAm probes used to calculate the MPS.

Table 2). We investigated if the top DMPs from MOMENT (p < 1 x
10~* m = 25) overlapped with brain mQTL regions®® (p < 1x 10 °)
and GWAS SNPs*® (p < 5 x 108). We found no evidence for overlap
with GWAS signals (Supplementary Table 3), which likely reflects
lack of power in both MWAS and GWAS, as has previously been
observed for body-mass index (BMI).”

DISCUSSION

In this study we have conducted the largest MWAS to date for ALS
and we use the new software OSCA that implements different
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MLM approaches specifically designed for omics data. We have
presented results to help evaluation of the comparison of linear
regression, MOA and MOMENT methods for a disease trait,
recognizing that the potential for confounding of technical
artefacts is much greater for a binary trait as compared to a
quantitative trait.

Using the most stringent MOMENT model, we identified 1 DMP
between ALS cases and controls, which is annotated to CXXC5 on
chromosome 5 (ch41 04695, Pmoa = 2.7 X 1077, PMOMENT = 2.1x
107, decreased blood DNA methylation associated with ALS). The
association was not replicated in the independent NL study, but
power analyses suggest this may reflect effect size and sample
size, reminiscent of early underpowered GWAS for which
increasing sample sizes have led to many new (highly replicated)
discoveries in the past decade.?® Despite lack of replication of the
most-associated probe, out-of-sample classification using effect
sizes estimated from the 25 most-associated DNAm sites in the AU
sample gave a classification AUC of 0.65 (p = 2.2 x 10 2°) in the NL
sample. We summarize literature evidence of a functional role for
CXXC5 in neurodegeneration and functional annotation of 25
most-associated DNAm sites in a Supplementary Note. We found
better out-of-sample classification when using DNAm effect sizes
estimated from MOMENT compared to MOA or linear regression
results, despite fewer probes detected at each association p value
threshold. Our results support the recommendation of Zhang
et al.'® to use the MOMENT over MOA model, since MOA results
may include more false-positive associations.

The maximum out-of-sample classification was achieved using a
score calculated from BLUP-estimated DNAm effect sizes together
with effect size estimates for predicted CTP (AUC = 0.69, Clgso, =
[0.66-0.71], p = 4.3 x 10 >%). We are careful to use the term out-of-
sample classification rather than prediction, because the blood
samples available to us in both the AU and NL cohorts were not
taken prior to diagnosis, hence the strength of classification may
reflect consequences as well as causes of disease. The trans-
national out-of-sample classification is a strength of our study, but
we recognize that best-practice medication and clinical manage-
ment are likely shared across countries. In these historically
collected samples we have incomplete records of riluzole use,
which was the only approved medication at the time of sample
collection. Despite these caveats it is noteworthy that the AUC is
much higher for DNAm classification (here AUC=0.69 from a
discovery sample of 782 cases and 613 controls) compared to SNP
polygenic risk score prediction (AUC=0.57 in our AU sample,
unpublished data, based on a discovery sample of 20,806 cases and
59,804 controls®). Comparison of genetic and DNAm predictors for
some complex traits also found much smaller discovery samples are
needed for DNAm predictors.>”*° However, this will also depend on
the underlying (epi)genetic architecture of the trait (for example,
DNAm predictors explained little variation in height, but high
variation in BMI compared to genetic predictors’).

Given the interest in developing early diagnostic biomarkers
from blood it seems a worthwhile goal to collect blood samples
from patients when they first present in neurology clinics, prior to
diagnosis, treatment, and clinical management. Generating DNAm
profiles from such samples would allow evaluation of DNAm as a
biomarker diagnostic tool. Such data could also evaluate the
sensitivity of the predictor in differentiating ALS from ALS mimics,
i.e, people who present to neurology clinics with ALS-like
symptoms, but who do not achieve ALS diagnosis (often after
lengthy clinical evaluation). Differences in CTP between cases and
controls is an important contributor to the out-of-sample
classification, consistent with reports of aberrant activation of
the peripheral immune system in ALS,***" and with reports of
associations between elevated white blood cell count and
increased ratio of circulating neutrophils to monocytes with
more-rapid progression of ALS.3*** Here, we predict CTP based on
the cell-type-specific DNAm signatures,'® but direct measurement
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of blood cell types might generate more accurate classifiers. We
estimate association effect sizes of >200,000 DNAm sites, and
necessarily effect sizes are estimated with error. Larger sample
sizes are needed to increase accuracy of estimation of DNAm
effect sizes and to increase classification accuracy. Larger, carefully
phenotyped sample collections could allow evaluations of
classification scores based on a combination of genetic, DNAm,
other “omics” and environmental risk factors.

Our study has several limitations. First, a perceived limitation of
our study may be that blood is not a relevant tissue for
understanding the biological mechanisms underlzying ALS, due
to the tissue-specificity of most DNAm patterns.*>° However,
blood is an easily accessible tissue which is relevant for generation
of biomarkers associated with disease. Biological or environmental
interpretation of DNAm associations can be made as downstream
analyses after their discovery. Variation between people in DNAm
controlled by SNP variation has been shown to have high
correlation between brain and blood,**” which provides further
support that blood may be an appropriate tissue for the goal of
developing early diagnostic biomarkers. A second limitation is that
the blood sample available to us from both the AU and NL cohorts
had incomplete clinical records, both in relation to time since
diagnosis and with respect to clinical management and treatment.
Ongoing sample collections in both countries are now collecting
such data more consistently.

In summary, we applied a new OSCA analysis pipeline to DNAm
data measured in whole blood in an Australian ALS case-control
cohort. The MOMENT method is expected to identify differences
in DNAm associated with disease independent of confounding
factors such as differences in cell-type proportion or smoking that
generate widespread DNAm changes. An MPS calculated from the
25 most-associated probes identified by MOMENT, and an MPS
based on cell-type differences both generate significant classifica-
tion of ALS in an independent sample (Fig. 3), with the profile
scores themselves being correlated only at 0.12 (Supplementary
Fig. 5). Given our relatively small discovery sample, our significant
classification results from an Australian discovery cohort into a
Netherlands target cohort indicate that DNAm may be a useful
predictive biomarker. We advocate for larger samples with blood
collected prior to diagnosis and with deep clinical phenotyping to
allow investigation of this proposal.

METHODS
Datasets description

The Australian ALS cohort (AU) consisted of two cohorts, AU1 (440 cases,
418 controls) and AU2 (342 cases ALS, 195 controls) (Supplementary Table
4). For AU1, patients and controls were ascertained from the University of
Sydney as part of the Australian MND DNA bank, which recruited
participants from April 2000 to June 2011. Cases were white Australians
older than 25 years recruited from around Australia via state-based MND
associations with diagnoses verified by neurologists. All participants gave
written consent and the study protocol was approved by the Sydney South
West Area Health Service Human Research Ethics Committee (HREC). AU2
cases were recruited from clinics across Australia between 2015 and 2017
and were diagnosed with definite or probable ALS according to the revised
El Escorial criteria.®® Control subjects were healthy individuals free of
neuromuscular diseases, recruited as either partners or friends of patients
with ALS or community volunteers. Those with a recorded family history
for ALS (including those recorded as testing positive for known mutations)
were excluded as both cases or controls in both AU1 and AU2. Additional
controls for the AU2 cohort were monozygotic (MZ) twin pairs aged >65
years contributed from the Older Australian Twin Study (OATS)*® recruited
at QIMR Berghofer Medical Research Institute, University of New South
Wales and the University of Melbourne. Twin pair data helped in quality
control (QC) checks but only one twin from each pair was used in analyses.
Written consent was obtained from all individuals enrolled in this study,
and the study was approved by the corresponding HREC at the different
sites: University of Sydney, Western Sydney Local Health District, Royal
Brisbane and Women Hospital Metro North, South Metropolitan Health
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Service, Macquarie University, QIMR Berghofer Medical Research Institute,
University of New South Wales and the University of Melbourne. The mean
predicted age,° predicted smoking scores,?® and sex distribution between
cases and controls for the cohorts used in this study can be found in
Supplementary Table 5.

A cohort from the Netherlands (NL) was available to us for replication
analyses, collected under Project MinE.*' The participants of this study
consisted of 1866 Netherlands individuals (N= 1222 cases, N =644
controls).*? All ALS cases were diagnosed with definite or probable ALS
according to the revised El Escorial criteria,*® and those with a recorded
family history for ALS were excluded. All participants gave written
informed consent and the institutional review board of the University
Medical Center Utrecht approved this study.

DNA methylation data

For the AU ALS datasets, bisulfite conversions were performed in 96-well
plates using the EZ-96 DNA Methylation Kit (Zymo Research, Irvine, CA,
USA). Prior to conversion, DNA concentrations were determined by the
Take3™ Micro-Volume Plate on the Epoch™ Microplate Spectrophotometer
(BioTek Instruments, Inc.) and standardized to include 500ng. Three
technical replicates were included in each conversion to assess repeat-
ability. The following DNA samples were obtained from the NIGMS Human
Genetic Cell Repository at the Coriell Institute for Medical Research: CEPH
NA06997 and CEPH NA07029. Each DNA sample was included as a control
on alternating plates. One sample from each run was duplicated on the
plate and one sample duplicated from a different plate. DNA recovery after
conversion was quantified using the Take3™ Micro-Volume Plate on the
Epoch™ Microplate Spectrophotometer (BioTek Instruments, Inc.). Samples
that showed incomplete bisulfite conversion (calculated concentration
<25 ng/pl) were not taken forward to the assessment of DNA methylation.
Bisulfite converted DNA samples were hybridized to the 12 sample,
lllumina Infinium HumanMethylation450 Beadchip (lllumina Inc, San
Diego, CA) using the Infinium HD Methylation protocol and Tecan robotics.
DNAm data for the NL sample were generated under similar protocols.

QC and normalization of DNA methylation data

Data QC and normalization were conducted using the meffil R package.”®
The same pipeline for DNA methylation (DNAm) data processing and QC
was applied to all samples. AU1 and AU2 samples were processed together
(along with additional samples from other studies). QC threshold
parameters (Supplementary Note) determined samples and DNAm sites
to exclude prior to normalization (Supplementary Table 6). Functional
normalization (FN) was performed to remove technical variation, as
described elsewhere.** The most variable normalized probes (m = 20,000)
were extracted, decomposed into principal components, and each
component regressed against slide, chip column, chip row, and sex to
test for batch effects. The association detection p value threshold was set
to 0.01. For both datasets technical variation was not completely removed
after FN and some known confounders affect DNA methylation. Thus, we
perform an additional adjustment step using the normalized DNAm probe
values (from meffil, as described above) in linear regression models as
response variable and predicted age, sex, chip position, predicted CTP
(excluding eosinophils, because of redundancy in proportion data),
predicted smoking scores and slide (as random effect) as covariates. The
residuals from this adjustment step were used for downstream MWAS
analyses. We hypothesized the effect of this pre-adjustment should have a
more pronounced effect in standard linear regression MWAS results
compared to mixed linear models. Supplementary Fig. 6 supports this
hypothesis, with a more pronounced reduction in significance of results in
linear regression (Supplementary Fig. 6a) compared to both MOA and
MOMENT (Supplementary Fig. 6b, ¢, respectively). We also observed a
lower correlation of effect sizes (Supplementary Fig. 6d), between linear
regression with pre-adjusted and non-adjusted DNA methylation values
(fb_Linear aj = 0.85, s.e.=67x107°), compared to both MOA
(?b,MOA,adj =0.99, se.=1.6x 1073) and MOMENT (?b,MOMENT,adj =0.97, s.
e.=5.7x10 3, Supplementary Fig. 6e, f, respectively). Related individuals,
sex-chromosome linked probes, probes influenced by SNPs, and probes
with non-unique hybridization and extension were also removed prior to
analysis, following recommendations described elsewhere.* Afterwards,
we removed remaining probes with s.d. <0.02. This decision is justified,
because power to detect an association depends in part on the variance
between individuals and (standardized) effect sizes. Excluding these DNAm
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sites also reduces the multiple testing burden in MWAS. In all, 160,304
probes remained for analysis in the AU cohort (Supplementary Table 6).

Omics residual maximum likelihood analyses (OREML): variance
captured by all DNAm sites

Based on extensive simulation and application to real DNAm data, Zhang
et al'® developed a method with one random-effect component to
estimate the proportion of trait variance captured by all DNAm sites. The
random-effect model can be written as

y = CB + Wu + ewithvar(y) = V= WW'c2 + lo2 = Ac? + I, 0]

where y is an n x 1 vector of phenotype values of n individuals, C is an n x
p matrix of p covariates (e.g., age, sex, smoking status), B is a p x 1 vector of
the fixed covariate effects on the phenotype, W is an n X m matrix of m
standardized DNAm values, where m is the number of DNAm sites, u; is an
m X 1 vector of the joint random probe effects on the phenotype, and e is
an n x 1 vector of residuals. The variance of y is var(y) = V=WW'c? + lo?2 .
We can re-write this equation as V = Ao? +lo2 with A=WW'/m and
of, = mai, where A is then the omics-data-based relationship matrix (ORM)
and o2 is the variance between individuals attributed to genome-wide
DNAm differences. The variance components can be estimated by REML.
The proportion of variance attributable to genome-wide DNAm, p? = Uf:oz,
is similar to the SNP-based heritability concept in GREML,** but where
variances represent factors that may include both causes and conse-
quences of the phenotype. The baseline variance of the phenotype
case-control status in the AU sample is approximated as the binomial
variance of 63 = P(1—P) = 0.246, where P is the proportion of the sample
that are cases (P=0.56), with the reported 6,2, being the sum of the
estimates of the variance components 62 + G2.

Linear regression DNA MWAS analysis
For linear regression MWAS we used models without:

y=wib +e )
and with covariates
y=wibj+CB+e (3)

where w; (@ nx 1 vector of DNAm measures of a probe j, i.e., the target
probe) and b; (the effect of probe i on the phenotype; fixed effect). We
used the 10 principal components estimated from the ORM as covariates.

MLM-based omics association (MOA) and multi-component MLM-
based omics association excluding the target (MOMENT) MWAS
analyses

We conducted MLM MWAS using both MOA and MOMENT. The MOA
MWAS model is

y=wib; + Wu +e 4

In this model, the probe being tested is fitted twice, once as a fixed and
also as a random effect, which results in slightly reduced power compared
to a (hypothetical) model in which the focal probe is excluded from W, but
this would be computationally very demanding. In this model it is assumed
that all probe effects follow a single distribution, which may not reflect the
true distribution. In the MOMENT model'® DNAm probe effect sizes are
drawn from two effect size distributions for different probes sets, selected
according to their association statistics in an initial linear regression model,
with each group then fitted as a random-effect:

y= W,'b,' —+ ZW]UJ‘ + e (5)
j

where Wj is an n x m; matrix of standardized DNAm probe values in the jth
group, and m; is the number of DNAm sites in the group (excluding the
DNAm sites in the 100 Kb region centred at the probe being tested). After
conducting MWAS, DNAm sites were mapped to the latest GRCh38/hg38
genome build* and annotated to genes, based on GENCODE v22. We used
the r, method®® to quantify the similarity between probe effects, which
accounts for sample overlap and errors in the estimated probe effects.

Out-of-sample classification using DNA MPSs

MPS were calculated for each individual in the NL sample as the sum of
DNAm probe values weighted by their effect sizes estimated in the AU
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sample (Supplementary Fig. 3). In different analyses DNAm probe effect
sizes were estimated from the linear regression, MOA or MOMENT MWAS
or the BLUP-estimated probe values of u from Eq. (1), as implemented in
OSCA."® In the BLUP models, predicted age, sex, predicted smoking scores,
and batch effects (chip position and slide) were fitted as fixed effects.
Classification efficacy of the MPS was evaluated by the area under the
receiver-operator characteristic curve (AUC) that relates the false-positive
rate (specificity) to the true-positive rate (sensitivity), in logistic regression.
We used the R package pROC* to plot the receiver-operator characteristic
curves and calculate AUC for each MPS. To evaluate the possible gain in
classification accuracy, we calculated MPS from the fixed effects of
predicted CTP, estimated in an OREML analysis (Eqg. (1)). Analyses were
conducted in R version 3.5.0 and OSCA v0.45.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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