256 research outputs found

    Finite sum of gluon ladders and high energy cross sections

    Get PDF
    A model for the Pomeron at t=0t=0 is suggested. It is based on the idea of a finite sum of ladder diagrams in QCD. Accordingly, the number of ss-channel gluon rungs and correspondingly the powers of logarithms in the forward scattering amplitude depends on the phase space (energy) available, i.e. as energy increases, progressively new prongs with additional gluon rungs in the ss-channel open. Explicit expressions for the total cross section involving two and three rungs or, alternatively, three and four prongs (with ln2(s)\ln^2(s) and ln3(s)\ln^3(s) as highest terms, respectively) are fitted to the proton-proton and proton-antiproton total cross section data in the accelerator region. Both QCD calculation and fits to the data indicate fast convergence of the series. In the fit, two terms (a constant and a logarithmically rising one) almost saturate the whole series, the ln2(s)\ln^2(s) term being small and the next one, ln3(s)\ln^3(s), negligible. Theoretical predictions for the photon-photon total cross section are also given.Comment: 18 pages, LaTeX, 2 EPS figures, uses axodraw.st

    Proton-proton scattering above 3 GeV/c

    Get PDF
    A large set of data on proton-proton differential cross sections, analyzing powers and the double polarization parameter A_NN is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the rho, omega, f_2, and a_2 trajectories and single Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.Comment: 16 pages, 19 figures; revised version accepted for publication in EPJ

    Causality and dispersion relations and the role of the S-matrix in the ongoing research

    Full text link
    The adaptation of the Kramers-Kronig dispersion relations to the causal localization structure of QFT led to an important project in particle physics, the only one with a successful closure. The same cannot be said about the subsequent attempts to formulate particle physics as a pure S-matrix project. The feasibility of a pure S-matrix approach are critically analyzed and their serious shortcomings are highlighted. Whereas the conceptual/mathematical demands of renormalized perturbation theory are modest and misunderstandings could easily be corrected, the correct understanding about the origin of the crossing property requires the use of the mathematical theory of modular localization and its relation to the thermal KMS condition. These new concepts, which combine localization, vacuum polarization and thermal properties under the roof of modular theory, will be explained and their potential use in a new constructive (nonperturbative) approach to QFT will be indicated. The S-matrix still plays a predominant role but, different from Heisenberg's and Mandelstam's proposals, the new project is not a pure S-matrix approach. The S-matrix plays a new role as a "relative modular invariant"..Comment: 47 pages expansion of arguments and addition of references, corrections of misprints and bad formulation

    Strangeness Enhancement in p+Ap+A and S+AS+A Interactions at SPS Energies

    Full text link
    The systematics of strangeness enhancement is calculated using the HIJING and VENUS models and compared to recent data on pp\,pp\,, pA\,pA\, and AA\,AA\, collisions at CERN/SPS energies (200AGeV200A\,\, GeV\,). The HIJING model is used to perform a {\em linear} extrapolation from pppp to AAAA. VENUS is used to estimate the effects of final state cascading and possible non-conventional production mechanisms. This comparison shows that the large enhancement of strangeness observed in S+AuS+Au collisions, interpreted previously as possible evidence for quark-gluon plasma formation, has its origins in non-equilibrium dynamics of few nucleon systems. % Strangeness enhancement %is therefore traced back to the change in the production dynamics %from pppp to minimum bias pSpS and central SSSS collisions. A factor of two enhancement of Λ0\Lambda^{0} at mid-rapidity is indicated by recent pSpS data, where on the average {\em one} projectile nucleon interacts with only {\em two} target nucleons. There appears to be another factor of two enhancement in the light ion reaction SSSS relative to pSpS, when on the average only two projectile nucleons interact with two target ones.Comment: 29 pages, 8 figures in uuencoded postscript fil

    Models for Type Ia supernovae and related astrophysical transients

    Full text link
    We give an overview of recent efforts to model Type Ia supernovae and related astrophysical transients resulting from thermonuclear explosions in white dwarfs. In particular we point out the challenges resulting from the multi-physics multi-scale nature of the problem and discuss possible numerical approaches to meet them in hydrodynamical explosion simulations and radiative transfer modeling. We give examples of how these methods are applied to several explosion scenarios that have been proposed to explain distinct subsets or, in some cases, the majority of the observed events. In case we comment on some of the successes and shortcoming of these scenarios and highlight important outstanding issues.Comment: 20 pages, 2 figures, review published in Space Science Reviews as part of the topical collection on supernovae, replacement corrects typos in the conclusions sectio

    Demonstration of the temporal matter-wave Talbot effect for trapped matter waves

    Get PDF
    We demonstrate the temporal Talbot effect for trapped matter waves using ultracold atoms in an optical lattice. We investigate the phase evolution of an array of essentially non-interacting matter waves and observe matter-wave collapse and revival in the form of a Talbot interference pattern. By using long expansion times, we image momentum space with sub-recoil resolution, allowing us to observe fractional Talbot fringes up to 10th order.Comment: 17 pages, 7 figure

    Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV

    Get PDF
    Mid-rapidity transverse mass spectra and multiplicity densities of charged and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC. The spectra are exponential in transverse mass, with an inverse slope of about 280 MeV in central collisions. The multiplicity densities for these particles scale with the negative hadron pseudo-rapidity density. The charged kaon to pion ratios are K+/π=0.161±0.002(stat)±0.024(syst)K^+/\pi^- = 0.161 \pm 0.002 {\rm (stat)} \pm 0.024 {\rm (syst)} and K/π=0.146±0.002(stat)±0.022(syst)K^-/\pi^- = 0.146 \pm 0.002 {\rm (stat)} \pm 0.022 {\rm (syst)} for the most central collisions. The K+/πK^+/\pi^- ratio is lower than the same ratio observed at the SPS while the K/πK^-/\pi^- is higher than the SPS result. Both ratios are enhanced by about 50% relative to p+p and pˉ\bar{\rm p}+p collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl

    Azimuthal anisotropy and correlations in p+p, d+Au and Au+Au collisions at 200 GeV

    Full text link
    We present the first measurement of directed flow (v1v_1) at RHIC. v1v_1 is found to be consistent with zero at pseudorapidities η\eta from -1.2 to 1.2, then rises to the level of a couple of percent over the range 2.4<η<42.4 < |\eta| < 4. The latter observation is similar to data from NA49 if the SPS rapidities are shifted by the difference in beam rapidity between RHIC and SPS. Back-to-back jets emitted out-of-plane are found to be suppressed more if compared to those emitted in-plane, which is consistent with {\it jet quenching}. Using the scalar product method, we systematically compared azimuthal correlations from p+p, d+Au and Au+Au collisions. Flow and non-flow from these three different collision systems are discussed.Comment: Quark Matter 2004 proceeding, 4 pages, 3 figure
    corecore