640 research outputs found

    Au4V – Moment Stability and Spin Fluctuations in the Ordered Phase

    Get PDF
    Although neither gold nor vanadium generally possess a magnetic moment, the intermetallic compound Au4V is found to be ferromagnetic below 42K. In this paper we report the results of a muon spin relaxation study of the itinerant electron moment fluctuations in Au4V above the Curie temperature. The temperature dependence of the muon spin relaxation rate is found to be similar to that of the weak itinerant helimagnet, MnSi

    Multiplicities for LHC Nuclear Collisions Using HERA Structure Functions

    Full text link
    We compute in QCD perturbation theory the transverse energy carried by gluons, quarks and antiquarks with pT≥p0≈2p_T\ge p_0\approx 2 GeV in Pb+Pb collisions at s=5500\sqrt{s}=5500 AAGeV by using structure functions compatible with the small-xx increase observed at HERA. This gives a perturbative estimate for the energy and entropy density of the bulk system at times τ∼0.1\tau\sim 0.1 fm. The predicted initial gluon entropy density gives a lower limit of about 2200...3400 for the final charged multiplicity. Sources of further entropy increase are discussed.Comment: HU-TFT-94-6, 7 pages, 3 PostScript figures included in the end of the tex-fil

    EPS09 - a New Generation of NLO and LO Nuclear Parton Distribution Functions

    Full text link
    We present a next-to-leading order (NLO) global DGLAP analysis of nuclear parton distribution functions (nPDFs) and their uncertainties. Carrying out an NLO nPDF analysis for the first time with three different types of experimental input -- deep inelastic ℓ\ell+A scattering, Drell-Yan dilepton production in p+AA collisions, and inclusive pion production in d+Au and p+p collisions at RHIC -- we find that these data can well be described in a conventional collinear factorization framework. Although the pion production has not been traditionally included in the global analyses, we find that the shape of the nuclear modification factor RdAuR_{\rm dAu} of the pion pTp_T-spectrum at midrapidity retains sensitivity to the gluon distributions, providing evidence for shadowing and EMC-effect in the nuclear gluons. We use the Hessian method to quantify the nPDF uncertainties which originate from the uncertainties in the data. In this method the sensitivity of χ2\chi^2 to the variations of the fitting parameters is mapped out to orthogonal error sets which provide a user-friendly way to calculate how the nPDF uncertainties propagate to any factorizable nuclear cross-section. The obtained NLO and LO nPDFs and the corresponding error sets are collected in our new release called {\ttfamily EPS09}. These results should find applications in precision analyses of the signatures and properties of QCD matter at the LHC and RHIC.Comment: 34 pages, 16 figures. The version accepted for publicatio

    Formation and Evolution of Quark-Gluon Plasma at RHIC and LHC

    Full text link
    Initial conditions for quark-gluon plasma formation at \tau=0.1\fm are considered in lowest order perturbative QCD. Chemical composition, thermalization of the formed semihard quark-gluon system and especially implications of the new HERA parton distributions with the enhancement at small xx are studied. The plasma at \tau=0.1\fm is shown to be strongly gluon dominated both at RHIC and LHC, and a possibility for rapid thermalization of gluons at LHC is pointed out. Uncertainties in the calculations, particularly shadowing corrections to the parton distributions, are discussed. Free streaming and ideal hydro limits for the evolution of the gluonic plasma with the calculated minijet initial conditions are demonstrated, and a lower limit for final multiplicities obtained for the LHC nuclear collisions.Comment: the uuencoded ps-file is replaced by the tex-file and a separate uuencoded file for the figures

    Cold Nuclear Matter Effects on Dijet Productions in Relativistic Heavy-ion Reactions at LHC

    Full text link
    We investigate the cold nuclear matter(CNM) effects on dijet productions in high-energy nuclear collisions at LHC with the next-to-leading order perturbative QCD. The nuclear modifications for dijet angular distributions, dijet invariant mass spectra, dijet transverse momentum spectra and dijet momentum imbalance due to CNM effects are calculated by incorporating EPS, EKS, HKN and DS param-etrization sets of parton distributions in nucleus . It is found that dijet angular distributions and dijet momentum imbalance are insensitive to the initial-state CNM effects and thus provide optimal tools to study the final-state hot QGP effects such as jet quenching. On the other hand, the invariant mass spectra and the transverse momentum spectra of dijet are generally enhanced in a wide region of the invariant mass or transverse momentum due to CNM effects with a feature opposite to the expected suppression because of the final-state parton energy loss effect in the QGP. The difference of EPS, EKS, HKN and DS parametrization sets of nuclear parton distribution functions is appreciable for dijet invariant mass spectra and transverse momentum spectra at p+Pb collisions, and becomes more pronounced for those at Pb+Pb reactions.Comment: 10 pages, 11 figure

    Screening of initial parton production in ultrarelativistic heavy-ion collisions

    Full text link
    Screening of initial parton production due to the presence of on-shell partons in high-energy heavy-ion collisions is discussed. It is shown that the divergent cross sections in the calculation of parton production can be regulated self-consistently without an {\it ad hoc} cut-off, and that the resultant parton production and transverse energy production rate are finite. Consequences on the energy density estimates are discussed.Comment: 10 pages, REVTeX, 5 ps-figures uuencode

    Scattering amplitudes with massive fermions using BCFW recursion

    Full text link
    We study the QCD scattering amplitudes for \bar{q}q \to gg and \bar{q}q \to ggg where q is a massive fermion. Using a particular choice of massive fermion spinor we are able to derive very compact expressions for the partial spin amplitudes for the 2 \to 2 process. We then investigate the corresponding 2 \to 3 amplitudes using the BCFW recursion technique. For the helicity conserving partial amplitudes we again derive very compact expressions, but were unable to treat the helicity-flip amplitudes recursively, except for the case where all the gluon helicities are the same. We therefore evaluate the remaining partial amplitudes using standard Feynman diagram techniques.Comment: 21 page

    Gauge Theories on a 2+2 Anisotropic Lattice

    Get PDF
    The implementation of gauge theories on a four-dimensional anisotropic lattice with two distinct lattice spacings is discussed, with special attention to the case where two axes are finely and two axes are coarsely discretized. Feynman rules for the Wilson gauge action are derived and the renormalizability of the theory and the recovery of the continuum limit are analyzed. The calculation of the gluon propagator and the restoration of Lorentz invariance in on-shell states is presented to one-loop order in lattice perturbation theory for SU(Nc)SU(N_c) on both 2+2 and 3+1 lattices.Comment: 27 pages, uses feynmf. Font compatibility adjuste

    Medium-evolved fragmentation functions

    Full text link
    Medium-induced gluon radiation is usually identified as the dominant dynamical mechanism underling the {\it jet quenching} phenomenon observed in heavy-ion collisions. In its actual implementation, multiple medium-induced gluon emissions are assumed to be independent, leading, in the eikonal approximation, to a Poisson distribution. Here, we introduce a medium term in the splitting probabilities so that both medium and vacuum contributions are included on the same footing in a DGLAP approach. The improvements include energy-momentum conservation at each individual splitting, medium-modified virtuality evolution and a coherent implementation of vacuum and medium splitting probabilities. Noticeably, the usual formalism is recovered when the virtuality and the energy of the parton are very large. This leads to a similar description of the suppression observed in heavy-ion collisions with values of the transport coefficient of the same order as those obtained using the {\it quenching weights}.Comment: LaTeX, 18 pages, 13 figures included using epsfig, uses JHEP3; v2: enlarged discussions, one figure replaced, some references added, final versio
    • …
    corecore