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Au4V – Moment Stability and Spin Fluctuations in the 

Ordered Phase 

K.J. Ellis, R. Cywinski, S.H. Kilcoyne, A.D. Hillier  

1. The Gold-Vanadium System 

The first investigations (1959) of magnetism in the gold-vanadium system were performed on 

disordered alloys ranging from 1-15 at.% vanadium [1], in which the temperature dependent susceptibility 

closely obeyed a Curie-Weiss law incorporating a temperature independent term, χ0, such that 
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where C is the Curie constant and θ is the critical temperature.  Interestingly the critical temperature of 

these relatively dilute alloys was found to be negative, despite there being no evidence of a magnetic 

transition.  To explain this behaviour a model was proposed in which a fraction of “isolated” vanadium 

atoms i.e. those without other vanadium nearest neighbours, possess a local moment with the remaining 

fraction contributing to the Pauli-like temperature independent term. 

 

Creveling et al [2] extended the study of Au-V to higher concentrations ranging from 17-24 at.% V. 

When annealed at ~500°C, these alloys were found to undergo a structural transition forming an 

intermetallic compound with the nominal concentration Au4V with a body-centred tetragonal structure 

(I4/m).  This phase effectively isolates all the vanadium atoms and correspondingly a ferromagnetic 

transition was found at ~45K.  In this ordered phase the susceptibility above Tc obeys the Curie-Weiss law 

given in Eq. 1.  However a large disparity in the magnetic measurements between different samples was 

noted.  It has been suggested that this is due in part to magneto-crystalline anisotropy which is not only 

the result of the non-cubic structure but also crystalline imperfections caused by the arbitrary alignment of 

the tetragonal c-axis.  As generally observed for weak itinerant electron ferromagnets, the ordered 

moment of Au4V is substantially lower (approximately half that) of the paramagnetic moment; however, 

annealing under compression promotes alignment of the c-axis, and increases the ordered moment from 

the usual value of 0.4-0.6µB to 0.83µB per V atom [3].  Furthermore, in extremely high pulsed magnetic 

fields (29T) the ordered moment saturates to Ms = 1µB per V atom, indicating a spin-½ moment [4]. 

 

The importance of the V-V distance in establishing a localised moment, and consequently 

ferromagnetic order, is further emphasised by the observation that when Au4V is prepared as a disordered 

solid solution the V moment, and also ferromagnetism, collapses.  Au4V thus appears to belong to the 

same class of weak itinerant ferromagnets as ZrZn2 and Sc3In.  However, in marked contrast to systems 

such as ZrZn2, for which the application of external pressure rapidly decreases Tc to zero by 20kbar, the 

Curie temperature of Au4V increases with pressure to 90K at ~180kbar, at which point the magnetic order 

collapses entirely [5]. 

 

Positive muon spin relaxation has proved to be an invaluable tool in investigating itinerant magnetic 

systems such as MnSi, as demonstrated in the seminal paper by Hayano et al [6].  We have therefore 

performed zero and longitudinal-field measurements on Au4V using the MuSR spectrometer, (ISIS 

Facility, UK) to follow the evolution of spin fluctuations with temperature between 5K and 90K.   

 

The polycrystalline Au4V samples were prepared by argon arc melting stoichiometric proportions of 

gold and vanadium.  The resulting 2g ingots were pressed into disks, approximately 5mm in diameter and 



1.5mm thick before undergoing two days of homogenisation at 1000°C under reduced argon atmosphere, 

followed by annealing at 500°C for eight days.  

2. Muon Spin Relaxation in Zero-Field 

The observed zero-field muon spin relaxation spectra for Au4V were best modelled by a dynamical 

Kubo-Toyabe function, G
(DKT)

, representing a nuclear dipole contribution, multiplied by a simple 

exponential term, representing the contribution from atomic spin fluctuations .   
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where a0 is the initial asymmetry, a1 is the relaxing asymmetry and ab is a background. 

 

In the paramagnetic regime, above 50K, the muon relaxation rate σ from the randomly orientated 

nuclear dipoles is constant at 0.34µs
-1

.  Furthermore, these spectra show a marked divergence of λ from a 

negligibly small value at high temperatures to a maximum at the reported Curie point of Au4V. 

 

 

Figure 1: The structure of ordered Au4V in which vanadium atoms are black and gold atoms silver.  The isosurface 

indicates the positions within the unit cell where the nuclear depolarisation rate, σ = 0.34µs-1.  Labels 1 & 2 indicate 

the likely muon position. 

 

Estimates of the nuclear dipole contributions within the unit cell suggest possible muon sites at the 

centres of the 3Au-1V tetrahedron or the 5Au-1V octahedron as shown in Figure 1.  The slow fluctuation 

rate rate (<1µs
-1

) observed as a damping of the “tail” of the Kubo-Toyabe function is likely to arise from 

the muon hopping between these interstitial sites.  

3. Muon Spin Relaxation in Applied Longitudinal Fields 

Spectra from Au4V were collected in sufficiently high longitudinal magnetic fields to decouple the 

muon from the nuclear dipole fields, but sufficiently small to offer negligible perturbation of the atomic 

spins.  In Figure 2 we present spectra from a range of applied longitudinal-fields above the transition 

temperature, clearly showing a full decoupling at 100G.  Above this field the µSR spectra are well 

described by a simple exponential function.  The associated relaxation rate, λ, increases rapidly as the 

transition temperature is approached until below 50K a there is a critical divergence.  As found for the 

weak itinerant helimagnet, MnSi [6] this critical divergence is best described by the simple formula: 
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A least square fit of Eq. 3 to the data provides �� = 42.0 ± 0.2K and �∞= (3.17 ± 0.14) ×10
-3

µs
-1

.  For 

comparison �∞ for MnSi (Tc=29.5K) was found to be (6.55 ± 0.13) ×10
-3

µs
-1

. Figure 3 shows the critical 

scaling of λ, described by Eq. 3, for both Au4V and MnSi with the data for the latter taken from [6].  

4. Conclusions 

The critical scaling of the muon spin relaxation rate observed for Au4V shows close similarity with that 

obtained for the archetypal itinerant electron ferromagnet, MnSi, and correspondingly follows the 

predications of Moriya’s self consistent renormalisation (SCR) theory for itinerant systems [7].  In this 

respect Au4V may well prove a simpler system with which the mechanisms responsible for moment 

localisation in itinerant electron magnets can be explored.   

 

 
 

 
 

Figure 2: The longitudinal field muon spin 

relaxation spectra from Au4V observed at 46K in 

several applied fields.  Eq. 2 was used to fit both 0G 

and 10G data.  The application of 100G fully decouples 

the nuclear dipole fields such that it can be fitted with a 

single exponential term. 
 

Figure 3: The scaled inverse muon spin relaxation 

rate (τ∞ / λ) versus reduced temperature for Au4V 

(closed circles) and MnSi (open circles).  The solid line 

represents the fit of Eq. 3, as predicted by SCR theory 

[7]  to the data. The experimental points for MnSi are 

taken from [6].  Insert:  The temperature dependence of 

λ in Au4V. 
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