42 research outputs found

    Simulations of galactic dynamos

    Full text link
    We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observational basis for such results in terms of rotation measure analysis. Next, we discuss nonlinear theory, the role of magnetic helicity conservation and magnetic helicity fluxes. This leads to the possibility that galactic magnetic fields may be bi-helical, with opposite signs of helicity and large and small length scales. We discuss their observational signatures and close by discussing the possibilities of explaining the origin of primordial magnetic fields.Comment: 28 pages, 15 figure, to appear in Lecture Notes in Physics "Magnetic fields in diffuse media", Eds. E. de Gouveia Dal Pino and A. Lazaria

    Post-stimulus fMRI and EEG responses: evidence for a neuronal origin hypothesised to be inhibitory

    Get PDF
    Post-stimulus undershoots, negative responses following cessation of stimulation, are widely observed in functional magnetic resonance (fMRI) blood oxygenation level dependent (BOLD) data. However, the debate surrounding whether the origin of this response phase is neuronal or vascular, and whether it provides functionally relevant information, that is additional to what is contained in primary response, means that undershoots are widely overlooked. We simultaneously recorded electroencephalography (EEG), BOLD and cerebral blood-flow (CBF) [obtained from arterial spin labelled (ASL) fMRI] fMRI responses to hemifield checkerboard stimulation to test the potential neural origin of the fMRI post-stimulus undershoot. The post-stimulus BOLD and CBF signal amplitudes in both contralateral and ipsilateral visual cortex depended on the post-stimulus power of the 8-13 Hz (alpha) EEG neuronal activity, such that trials with highest EEG power showed largest fMRI undershoots in contralateral visual cortex. This correlation in post-stimulus EEG-fMRI responses was not predicted by the primary response amplitude. In the contralateral visual cortex we observed a decrease in both cerebral rate of oxygen metabolism (CMRO2) and CBF during the post-stimulus phase. In addition, the coupling ratio (n) between CMRO2 and CBF was significantly lower during the positive contralateral primary response phase compared with the post-stimulus phase and we propose that this reflects an altered balance of excitatory and inhibitory neuronal activity. Together our data provide strong evidence that the post-stimulus phase of the BOLD response has a neural origin which reflects, at least partially, an uncoupling of the neuronal responses driving the primary and post-stimulus responses, explaining the uncoupling of the signals measured in the two response phases. We suggest our results are consistent with inhibitory processes driving the post-stimulus EEG and fMRI responses. We therefore propose that new methods are required to model the post-stimulus and primary responses independently, enabling separate investigation of response phases in cognitive function and neurological disease

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Structure and evolution of long-lived spiral patterns in galaxies

    No full text
    We use N-body simulations to study the non-linear evolution of spontaneous and tidally induced spiral patterns in galaxies on time-scales of several rotation periods of the disc. We find that the patterns can sometimes survive with an almost constant amplitude for five revolutions or more, and tend to be regenerated after disappearing temporarily. The pattern velocity is such that the corotation radius is where the self-gravity as measured by the swing amplification of the m=2 component is strongest, and the amplitude of the pattern is larger when swing amplification is stronger. The shape of the spirals is independent of the origin of the pattern, and corresponds to the critical wave number kappa^2^/(2piGmu), where mu is the disc surface density. The pattern survives longer if the self-gravity of the disc is strong. For a given disc model the life-time of the pattern depends on its amplitude, with stronger patterns having shorter life-times. If self-gravity is weak, the dominant tidal effect is a kinematic spiral at the inner Lindblad resonance

    Structure and evolution of long-lived spiral patterns in galaxies

    No full text
    We use N-body simulations to study the non-linear evolution of spontaneous and tidally induced spiral patterns in galaxies on time-scales of several rotation periods of the disc. We find that the patterns can sometimes survive with an almost constant amplitude for five revolutions or more, and tend to be regenerated after disappearing temporarily. The pattern velocity is such that the corotation radius is where the self-gravity as measured by the swing amplification of the m=2 component is strongest, and the amplitude of the pattern is larger when swing amplification is stronger. The shape of the spirals is independent of the origin of the pattern, and corresponds to the critical wave number kappa^2^/(2piGmu), where mu is the disc surface density. The pattern survives longer if the self-gravity of the disc is strong. For a given disc model the life-time of the pattern depends on its amplitude, with stronger patterns having shorter life-times. If self-gravity is weak, the dominant tidal effect is a kinematic spiral at the inner Lindblad resonance

    Simulations of the effect of spiral arms on the cloud-ensemble velocity dispersion

    No full text
    N-body simulations are used to study the effect of spiral heating, viscous heating, and cooling by inelastic collisions on the molecular cloud ensemble velocity dispersion. The simulations include inelastic collisions between clouds as well as long-range gravitational forces. The theory for heating and cooling of the cloud population is described, and the numerical code and the galaxy model are examined. Spiral arms not only heat the cloud population, they also cause increased cooling due to the large number of cloud-cloud collisions in the arms. It is found that the heating dominates, in that a stronger spiral potential leads to a higher velocity dispersion. The spiral potential is stronger for smaller values of Q(star). The steady-state cloud-ensemble velocity dispersion is found to be constant with the radius. Its value for a typical simulation of a multiple-arm spiral is slightly smaller than the value observed in the Galaxy. The stellar velocity dispersion corresponds to a radius-independent Q(star), for multiple-arm galaxies regardless of the initial radial dependence

    A computer-generated galaxy model with long-lived two-armed spiral structure

    No full text
    A long-lived two-armed spiral has been generated in an N-body computer simulation of a galaxy with a static bulge and halo and an active disk composed of 60,000 particles. The spiral lasts for about three pattern revolutions without severe distortion and persists for at least two more revolutions with distortions and bifurcations resulting from an increasingly clumpy ISM. This suggests that two-armed grand design spirals in nonbarred noninteracting galaxies can be long-lived if star formation and other heat sources not present in the simulation maintain a steady interstellar medium
    corecore