96 research outputs found

    Storing and releasing light in a gas of moving atoms

    Get PDF
    We propose a scheme of storing and releasing pulses or cw beams of light in a moving atomic medium illuminated by two stationary and spatially separated control lasers. The method is based on electromagnetically induced transparency (EIT) but in contrast to previous schemes, storage and retrieval of the probe pulse can be achieved at different locations and without switching off the control laser.Comment: 4 pages, 3 figures, revised versio

    Interference scheme to measure light-induced nonlinearities in Bose-Einstein condensates

    Full text link
    Light-induced nonlinear terms in the Gross-Pitaevskii equation arise from the stimulated coherent exchange of photons between two atoms. For atoms in an optical dipole trap this effect depends on the spatial profile of the trapping laser beam. Two different laser beams can induce the same trapping potential but very different nonlinearities. We propose a scheme to measure light-induced nonlinearities which is based on this observation.Comment: 2 figure

    Dead layer on silicon p–i–n diode charged-particle detectors

    Get PDF
    Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon p-i-n diode used in the KATRIN neutrinomass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by diffusion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Broad-scale patterns of body size in squamate reptiles of Europe and North America

    Full text link
    Aim To document geographical interspecific patterns of body size of European and North American squamate reptile assemblages and explore the relationship between body size patterns and environmental gradients. Location North America and western Europe. Methods We processed distribution maps for native species of squamate reptiles to document interspecific spatial variation of body size at a grain size of 110 x 110 km. We also examined seven environmental variables linked to four hypotheses possibly influencing body size gradients. We used simple and multiple regression, evaluated using information theory, to identify the set of models best supported by the data. Results Europe is characterized by clear latitudinal trends in body size, whereas geographical variation in body size in North America is complex. There is a consistent association of mean body size with measures of ambient energy in both regions, although lizards increase in size northwards whereas snakes show the opposite pattern. Our best models accounted for almost 60% of the variation in body size of lizards and snakes within Europe, but the proportions of variance explained in North America were less than 20%. Main conclusions Although body size influences the energy balance of thermoregulating ectotherms, inconsistent biogeographical patterns and contrasting associations with energy in lizards and snakes suggest that no single mechanism can explain variation of reptile body size in the northern temperate zone

    Focal-plane detector system for the KATRIN experiment

    Get PDF
    The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum system, calibration and monitoring devices, a scintillating veto, and a custom data-acquisition system. It is designed to detect the low-energy electrons selected by the KATRIN main spectrometer. We describe the system and summarize its performance after its final installation.Comment: 28 pages. Two figures revised for clarity. Final version published in Nucl. Inst. Meth.

    Effects of rare kidney diseases on kidney failure: a longitudinal analysis of the UK National Registry of Rare Kidney Diseases (RaDaR) cohort

    Get PDF
    Background Individuals with rare kidney diseases account for 5–10% of people with chronic kidney disease, but constitute more than 25% of patients receiving kidney replacement therapy. The National Registry of Rare Kidney Diseases (RaDaR) gathers longitudinal data from patients with these conditions, which we used to study disease progression and outcomes of death and kidney failure. Methods People aged 0–96 years living with 28 types of rare kidney diseases were recruited from 108 UK renal care facilities. The primary outcomes were cumulative incidence of mortality and kidney failure in individuals with rare kidney diseases, which were calculated and compared with that of unselected patients with chronic kidney disease. Cumulative incidence and Kaplan–Meier survival estimates were calculated for the following outcomes: median age at kidney failure; median age at death; time from start of dialysis to death; and time from diagnosis to estimated glomerular filtration rate (eGFR) thresholds, allowing calculation of time from last eGFR of 75 mL/min per 1·73 m2 or more to first eGFR of less than 30 mL/min per 1·73 m2 (the therapeutic trial window). Findings Between Jan 18, 2010, and July 25, 2022, 27 285 participants were recruited to RaDaR. Median follow-up time from diagnosis was 9·6 years (IQR 5·9–16·7). RaDaR participants had significantly higher 5-year cumulative incidence of kidney failure than 2·81 million UK patients with all-cause chronic kidney disease (28% vs 1%; p<0·0001), but better survival rates (standardised mortality ratio 0·42 [95% CI 0·32–0·52]; p<0·0001). Median age at kidney failure, median age at death, time from start of dialysis to death, time from diagnosis to eGFR thresholds, and therapeutic trial window all varied substantially between rare diseases. Interpretation Patients with rare kidney diseases differ from the general population of individuals with chronic kidney disease: they have higher 5-year rates of kidney failure but higher survival than other patients with chronic kidney disease stages 3–5, and so are over-represented in the cohort of patients requiring kidney replacement therapy. Addressing unmet therapeutic need for patients with rare kidney diseases could have a large beneficial effect on long-term kidney replacement therapy demand. Funding RaDaR is funded by the Medical Research Council, Kidney Research UK, Kidney Care UK, and the Polycystic Kidney Disease Charity

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at √s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into diferent pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at √s = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, tt¯, and tb) or third-generation leptons (τν and τ τ ) are included in this kind of combination for the frst time. A simplifed model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confdence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Searches for exclusive Higgs boson decays into D⁎γ and Z boson decays into D0γ and Ks0γ in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for exclusive decays of the Higgs boson into D⁎γ and of the Z boson into D0γ and Ks0γ can probe flavour-violating Higgs boson and Z boson couplings to light quarks. Searches for these decays are performed with a pp collision data sample corresponding to an integrated luminosity of 136.3 fb−1 collected at s=13TeV between 2016–2018 with the ATLAS detector at the CERN Large Hadron Collider. In the D⁎γ and D0γ channels, the observed (expected) 95% confidence-level upper limits on the respective branching fractions are B(H→D⁎γ)&lt;1.0(1.2)×10−3, B(Z→D0γ)&lt;4.0(3.4)×10−6, while the corresponding results in the Ks0γ channel are B(Z→Ks0γ)&lt;3.1(3.0)×10−6
    corecore