23 research outputs found

    Magnetic interactions in EuTe epitaxial layers and EuTe/PbTe superlattices

    Full text link
    The magnetic properties of antiferromagnetic (AFM) EuTe epitaxial layers and short period EuTe/PbTe superlattices (SLs), grown by molecular beam epitaxy on (111) BaF2_2 substrates, were studied by magnetization and neutron diffraction measurements. Considerable changes of the N\'eel temperature as a function of the EuTe layer thickness as well as of the strain state were found. A mean field model, taking into account the variation of the exchange constants with the strain-induced lattice distortions, and the nearest neighbor environment of a Eu atoms, was developed to explain the observed TNT_{\text N} changes in wide range of samples. Pronounced interlayer magnetic correlations have been revealed by neutron diffraction in EuTe/PbTe SLs with PbTe spacer thickness up to 60 \AA. The observed diffraction spectra were analyzed, in a kinematical approximation, assuming partial interlayer correlations characterized by an appropriate correlation parameter. The formation of interlayer correlations between the AFM EuTe layers across the nonmagnetic PbTe spacer was explained within a framework of a tight-binding model. In this model, the interlayer coupling stems from the dependence of the total electronic energy of the EuTe/PbTe SL on the spin configurations in adjacent EuTe layers. The influence of the EuTe and PbTe layer thickness fluctuations, inherent in the epitaxial growth process, on magnetic properties and interlayer coupling is discussed.Comment: 17 pages, 19 figures, accepted to PR

    The L 98-59 System: Three Transiting, Terrestrial-Size Planets Orbiting A Nearby M Dwarf

    Get PDF
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R⊕ to 1.6 R⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system

    The Scientific Foundations of Forecasting Magnetospheric Space Weather

    Get PDF
    The magnetosphere is the lens through which solar space weather phenomena are focused and directed towards the Earth. In particular, the non-linear interaction of the solar wind with the Earth's magnetic field leads to the formation of highly inhomogenous electrical currents in the ionosphere which can ultimately result in damage to and problems with the operation of power distribution networks. Since electric power is the fundamental cornerstone of modern life, the interruption of power is the primary pathway by which space weather has impact on human activity and technology. Consequently, in the context of space weather, it is the ability to predict geomagnetic activity that is of key importance. This is usually stated in terms of geomagnetic storms, but we argue that in fact it is the substorm phenomenon which contains the crucial physics, and therefore prediction of substorm occurrence, severity and duration, either within the context of a longer-lasting geomagnetic storm, but potentially also as an isolated event, is of critical importance. Here we review the physics of the magnetosphere in the frame of space weather forecasting, focusing on recent results, current understanding, and an assessment of probable future developments.Peer reviewe

    The position of the M-BCR breakpoint does not predict the duration of chronic phase or survival in chronic myeloid leukemia

    No full text
    It has been reported that patients with chronic myeloid leukemia (CML) with 5' breakpoints within the major breakpoint cluster region (M-BCR) of the BCR gene have somewhat better prognoses than those with 3' breakpoints. We studied the position of the breakpoint in 67 patients with CML in chronic phase using conventional Southern blotting. Using restriction enzymes BglII, BamHI and HindIII and two genomic probes, a 0.6 kb (3' M-BCR) probe hybridizing to a part of the intron between exons b3 and b4 and a 2.0 kb (5' M-BCR) probe hybridizing to sequences including exon b1, we localized the breakpoint in M-BCR as occurring 5' (n = 38) or 3' (n = 28) of the HindIII restriction site located just downstream of exon b3. We failed to localize the breakpoint in one patient. The median durations of chronic phase (37 versus 44 months respectively) and of survival (50 versus 51 months respectively) for patients with 5' and 3' breakpoints were not significantly different. When we analysed only patients whose DNA was collected within 4 weeks of diagnosis (5' breakpoints, n = 30; 3' breakpoints, n = 19), there was again no significant difference in duration of chronic phase or survival. The median survivals of patients divided into good, intermediate and poor prognosis categories in accordance with the prognostic index developed by Sokal and colleagues were 54, 50 and 26 months respectively. This study confirms the value of the Sokal prognostic index but provides no support for the notion that the precise genomic position of the breakpoint in M-BCR correlates with prognosis.Journal ArticleFLWNAinfo:eu-repo/semantics/publishe
    corecore